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Nuclear transparencies from photoinduced pion production
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We present a relativistic and cross-section factorized framework for computing nuclear transparencies extracted
from A(γ, πN ) reactions at intermediate energies. The proposed quantum mechanical model adopts a relativistic
extension to the multiple-scattering Glauber approximation to account for the final state interactions of the ejected
nucleon and pion. The theoretical predictions are compared against the experimental 4He(γ, pπ−) data from the
Thomas Jefferson National Accelerator Facility. For those data, our results show no conclusive evidence of the
onset of mechanisms related to color transparency.
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The strong interaction exhibits a strong scale dependence.
At low energies, hadrons are undoubtedly the adequate degrees
of freedom. The properties of nuclei can be fairly well
understood in a picture in which nucleons exchange mesons.
At high energies, that particular role of fermions interacting
through force-carrying bosons is played by quarks and gluons.
The transition energy region is a topic of current intensive
research at, for example, the Thomas Jefferson National
Accelerator Facility (Jefferson Lab), where hadronic matter
can be studied with intense beams of real and virtual photons
possessing the proper wavelengths in the femtometer and
subfemtometer range. An observable commonly used to pin
down the underlying dynamics of hadronic matter is the
nuclear transparency to the transmission of hadrons. The
nuclear transparency for a certain reaction process is defined
as the ratio of the cross section per target nucleon to the one for
a free nucleon. Accordingly, the transparency is a measure of
the effect of the medium on the passage of energetic hadrons.
It provides an excellent tool for searching for deviations from
predictions of models based on traditional nuclear physics.
One such phenomenon is color transparency (CT). Color
transparency predicts the reduction of final state interactions
(FSI) of hadrons propagating through nuclear matter in
processes at high momentum transfer. Experiments have been
carried out to measure nuclear transparencies in search of CT
in A(p, 2p) [1–4] and A(e, e′p) [5–10] reactions, ρ-meson
production [11,12], and diffractive dissociation of pions into
di-jets [13]. Intuitively, one expects CT to reveal itself more
rapidly in reactions involving mesons. Indeed, it appears to be
more probable to produce a two-quark configuration with a
small transverse size and, as a consequence, reduced FSI.

Recently, the nuclear transparency for the pion photopro-
duction process γ n → π−p in 4He has been measured in
Hall A at Jefferson Lab [14]. In the experiment, both the
outgoing proton and the pion are detected for photon beam
energies in the range 1.6–4.5 GeV and pion center-of-mass
scattering angles of 70◦ and 90◦. With two hadrons in the final
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state, the pion photoproduction reaction on helium offers good
opportunities for searching for medium effects that go beyond
traditional nuclear physics. Not only is He a dense system, but
also its small radius optimizes the ratio of the hadron formation
length to the size of the system. Along the same line, a
pion electroproduction experiment at Jefferson Lab measuring
pion transparencies in H, D, 12C,64Cu, and 197Au [15] has been
completed, and data analysis is currently under way. It speaks
for itself, though, that the availability of a model for computing
transparencies extracted from A(γ, πN) and A(e, e′πN ) is
essential for interpreting all these measurements. As a matter
of fact, it is a real challenge to compute the effect of the
medium on the simultaneous emission of a nucleon and a pion
within the context of traditional nuclear physics models.

In Ref. [14], the results for γ n → π−p on 4He are
compared to the predictions of a semiclassical model by Gao,
Holt, and Pandharipande [16]. The results of the calculations
including CT effects were found to be more consistent with
the measurements. An alternative semiclassical approximation
to compute pionic transparencies is presented in Ref. [17]. A
quantum mechanical model for meson photoproduction on
2H was recently proposed by J. M. Laget [18]. In this Rapid
Communication, we present a quantum mechanical model for
computing the nuclear transparencies in γ n −→ π−p on finite
nuclei. The model is based on a relativized version of Glauber
theory and is essentially parameter free. To our knowledge,
the presented framework is the first of its kind.

In describing the A(γ,Nπ )A − 1 reaction, we use the
following laboratory four-momenta: Qµ(q, �q) for the photon,
P

µ

A (EA, �pA = �O) for the target nucleus, P
µ

A−1(EA−1, �pA−1)
for the residual nucleus, and P

µ

N = (EN, �pN ) and P µ
π =

(Eπ, �pπ ) for the ejected nucleon and pion. The missing
momentum �pm is defined as �pm = − �pA−1 = �pN + �pπ − �q.
Following the conventions of Ref. [19], the fivefold differential
cross section reads in the laboratory frame

dσ

dEπd�πd�N

= MA−1mNpπpN

4(2π )5qEA

f −1
rec

∑
if

∣∣M(γ,Nπ)
f i

∣∣2
, (1)

with the recoil factor given by

frec = EA−1

EA

∣∣∣∣1 + EN

EA−1

(
1 + ( �pπ − �q) · �pN

p2
N

)∣∣∣∣ , (2)
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and M(γ,Nπ)
f i is the invariant matrix element

M(γ,Nπ)
f i = 〈

P µ
π , P

µ

N ms, P
µ

A−1JRMR

∣∣Ô∣∣Qµ,P
µ

A 0+〉
, (3)

where ms is the spin of the ejected nucleon N , and JRMR the
quantum numbers of the residual nucleus. We restrict ourselves
to processes with an even-even target nucleus A. The operator
Ô describes the pion photoproduction process, and we assume
it to be free from medium effects. This is a common assumption
in nuclear and hadronic physics and is usually referred to as
the impulse approximation (IA).

For the target and residual nucleus, we use relativistic wave
functions as they are obtained in the Hartree approximation
to the σω model with the W1 parametrization [20]. When
studying the transparency, it is convenient to factorize the
invariant matrix element M(γ,Nπ)

f i into a part containing the
elementary pion photoproduction process and a part with
the typical medium mechanisms in the process under study.
It is clear that the attenuation on the ejected proton and pion
induced by FSI mechanisms belongs to the last category and
determines the nuclear transparency for the process under
study. Even in the relativistic plane-wave limit for the ejected
nucleon and pion wave function, factorization of the cross
section is not reached through the presence of negative-energy
contributions. Neglecting these, the computation leads to an
expression for the cross section in the relativistic plane wave
impulse approximation (RPWIA) that reads(

dσ

dEπd�πd�N

)
RPWIA

≈ MA−1pπpN (s − (mN )2)2

4πmNqMA

f −1
rec ρα( �pm)

dσγπ

d|t | , (4)

with ρα( �pm) = ∑
ms,m

|ū( �pm,ms)φα( �pm)|2 the momentum
distribution obtained by contracting the bound-state wave
function φα with the Dirac spinor u. The α(n, κ,m) denotes
the quantum numbers of the bound nucleon on which the
photon is absorbed. Further, dσγπ

d|t | denotes the cross section

for γ + N −→ π + N ′, and s = (Qµ + P
µ

A )2 and t = (Qµ −
P µ

π )2 are the Mandelstam variables.
In this work, we concentrate on A(γ,Nπ )A − 1 processes

for which the wavelengths of the ejected nucleons and
pions are typically smaller than their interaction ranges with
the nucleons in the rest nucleus. Those conditions make it
possible to describe the FSI mechanisms with the aid of
a Glauber model. A relativistic extension of the Glauber
model, dubbed the relativistic multiple-scattering Glauber
approximation (RMSGA), was introduced in Ref. [21]. In
the RMSGA, the wave function for the ejected nucleon and
pion is a convolution of a relativistic plane wave and an
eikonal Glauber phase operator ŜFSI(�r) which accounts for
all FSI mechanisms. Through the operation of ŜFSI(�r) every
residual nucleon in the forward path of the outgoing pion
and nucleon adds an extra phase to their wave function. The
RMSGA framework has proved successful in describing cross
sections and other observables in exclusive A(e, e′p) [21,22]
and A(p, 2p) [23] reactions. The numerically challenging
component in RMSGA is that ŜFSI(�r) involves a multiple
integral which tracks the effect of all collisions of an energetic

nucleon and pion with the remaining nucleons in the target
nucleus. Realistic nuclear wave functions are also used in the
models of Refs. [16,17]. Contrary to the RMSGA model,
however, the transparencies are computed at the squared
amplitude level adopting a semiclassical picture for the FSI
mechanisms.

In the numerical calculations within the context of the
RMSGA, the following phase is added to the product wave
function for the ejected nucleon and pion:

ŜFSI(�r) =
A∏

j=2

[1 − 
N ′N (�b − �bj )θ (zj − z)]

× [1 − 
πN (�b′ − �b′
j )θ (z′

j − z′)], (5)

where �rj (�bj , zj ) are the coordinates of the residual nucleons,
and �r(�b, z) specifies the interaction point with the photon. In
Eq. (5), the z and z′ axes lie along the path of the ejected
nucleon and pion, respectively. The �b and �b′ are perpendic-
ular to these paths. Reflecting the diffractive nature of the
nucleon-nucleon (N ′N ) and pion-nucleon (πN ) collisions at
intermediate energies, the profile functions 
N ′N and 
πN in
Eq. (5) are parametrized as


iN (�b) = σ tot
iN (1 − iεiN )

4πβ2
iN

exp

(
−

�b2

2β2
iN

)
(with i = π or N ′) .

(6)
Here, the parameters σ tot

iN (total cross section), βiN (slope
parameter), and εiN (real to imaginary part ratio of the
amplitude) depend on the momentum of the outgoing particle i.
In our calculations, those parameters are obtained by interpo-
lating data from the databases for N ′N −→ N ′N from the
Particle Data Group [24] and πN −→ πN from the analysis
of Refs. [25,26].

Now we derive an expression for the fivefold A(γ,Nπ )
A − 1 cross sections when implementing FSI effects. To this
end, we define the distorted momentum distribution

ρα
RMSGA( �pm) =

∑
ms,m

|ū( �pm,ms)φ
D
α ( �pm)|2 . (7)

Here, φD
α ( �p) = 1

(2π)3/2

∫
d�re−i �p·�rφα(�r)Ŝ†

FSI(�r) is the distorted
momentum-space wave function, which is the Fourier trans-
form of the bound nucleon wave function and the total Glauber
phase. In the absence of FSI, the ρα

RMSGA( �pm) of Eq. (7) reduces
to the ρα( �pm) in Eq. (4) when negative-energy components are
neglected. Based on this analogy, we obtain the cross section
in the RMSGA approach by replacing ρα( �pm) by ρα

RMSGA( �pm)
in Eq. (4).

In our calculations, color transparency effects are imple-
mented in the standard fashion by replacing the total cross
sections σ tot

iN in Eq. (6) with effective ones [27] which account
for some reduced interaction over a typical length scale
lh corresponding with the hadron formation length (i =
π or N ′), that is,

σ eff
iN

σ tot
iN

=
{[Z

lh
+

〈
n2k2

t

〉
t

(
1 − Z

lh

)
θ (lh − Z)

]
+ θ (Z − lh)

}
.

(8)
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FIG. 1. Nuclear transparency extracted from 4He(γ, pπ−) vs
squared momentum transfer |t | at θπ

c.m. = 70◦. Solid (dashed) curve
is the result of the RMSGA calculations without (with) color
transparency. Semiclassical model [16] results are presented by the
shaded areas: hatched (dotted) area is a calculation without (with)
CT. Data from Ref. [14].

Here n is the number of elementary fields (2 for the pion, 3
for the nucleon), kt = 0.350 GeV/c is the average transverse
momentum of a quark inside a hadron, Z is the distance the
object has traveled since its creation, and lh � 2p/�M2 is
the hadronic expansion length, with p the momentum of the
final hadron and �M2 the mass squared difference between
the intermediate prehadron and the final hadron state. We
adopted the values �M2 = 1 GeV2 for the proton and �M2 =
0.7 GeV2 for the pion.

In Figs. 1 and 2, we present the results of transparency
calculations for 4He together with the experimental data and
the predictions of the semiclassical model of Ref. [16]. In
comparing transparency measurements with theory, accurate
modeling of the experimental cuts is required. We adopt the
following definition for the transparency

T =
∑

i

∑
α Y (qi)

(
dσ

dEπi
d�πi

d�Ni

)
RMSGA∑

i

∑
α Y (qi)

(
dσ

dEπi
d�πi

d�Ni

)
RPWIA

, (9)

where i denotes an event within the ranges set by the detector
acceptances and applied cuts. Further,

∑
α extends over

all occupied single-particle states in the target nucleus. All
cross sections are computed in the laboratory frame. Further,

FIG. 2. As in Fig. 1, but for θπ
c.m. = 90◦.

Y (q) is the yield of the reconstructed experimental photon
beam spectrum for a certain photon energy [14]. We assume
that the elementary γ + n → π− + p cross section dσγπ

d|t | in
Eq. (4) remains constant over the kinematic ranges which
define a particular data point. With this assumption, the cross
section dσγπ

d|t | cancels out of the ratio (9). In order to reach
convergence in the phase-space averaging

∑
i in Eq. (9), we

generated about one thousand theoretical events within the
kinematic ranges of the experimental acceptances. This was
done for all data points, eight in total, and corresponding
kinematic ranges, of the Jefferson Lab experiment. Detailed
kinematics for these data points can be found in Ref. [14].

The computed RMSGA nuclear transparencies are sys-
tematically about 10% larger than those obtained in the
semiclassical model. As can be seen in Fig. 1, our model
predicts a rise in the transparency for |t | values below
1.2 GeV2. This rise is due to the minimum in the total
proton-nucleon cross section in Eq. (6) for the proton momenta
associated with these momentum transfers. The RMSGA
results overestimate the measured transparencies at small |t |,
but do reasonably well for the higher values of |t |. Inclusion
of CT effects tends to increase the predicted transparency at a
rate which depends on a hard-scale parameter. Here, that role
is played by the momentum transfer |t |. Thus, inclusion of CT
mechanisms results in an increase of the nuclear transparency
which grows with the momentum transfer |t |. The magnitude
of the increase depends on the choice of the parameters in
Eq. (8). For the moment, there are no experimental constraints
on their magnitude. As can be appreciated from Figs. 1
and 2, the RMSGA calculations predict CT effects comparable
to those from the semiclassical calculations. We have to stress,
though, that the calculations with CT are normalized to the
calculations without CT for the data point with the lowest |t | in
the semiclassical model. We did not perform this normalization
for our calculations. Our results without color transparency are
in better agreement with the experimental results than those
with CT effects included. This result is contrary to that with
the semiclassical model, whose results with CT effects are in
better agreement with the experimental data. We also have
to point out that although the calculations with CT effects
overestimate the experimental results for all data points, the
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FIG. 3. A dependence of the transparency. Calculations were
made for 4He,12C,16O,56Fe, and 208Pb at |t | = 3.5 GeV2 for θπ

c.m. =
90◦ without color transparency.
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slope of this curve shows better agreement with the slope of
the data than does the slope of the curves without CT effects.

To provide an idea of the A dependence of the nu-
clear transparency extracted from A(γ, pπ−), we plotted in
Fig. 3 the calculations for one data point for several nuclei
with the same kinematic cuts as before. However, because of
these cuts, nucleon knockout from the innermost shells in the
heavier nuclei was not always possible for the generated events
in the calculations. The transparency would be even lower for
these heavier nuclei if no cuts were to be applied.

In summary, we have developed a quantum mechanical
model based on a relativistic extension to multiple-scattering
Glauber theory to calculate nuclear transparencies extracted
from A(γ,Nπ ) processes. The model can be applied to
any even-even target nucleus with a mass number A � 4.
The nuclear transparency is the result of the attenuating
effect of the medium on the ejected proton and pion, and
it is computed by means of a Glauber phase operator. The

numerical computation of the latter requires knowledge about
πN → πN and N ′N → N ′N cross sections, as well as a set of
relativistic mean-field wave functions for the residual nucleus.
In contrast to alternative models, which adopt a semiclassical
approach, we treat FSI mechanisms at the amplitude level in
a quantum mechanical and relativistic manner. Comparison
with experimental results for helium shows no evidence of
color transparency in our model. Further progress will very
much depend on the availability of new data. The model
presented here can be readily extended to electroproduction
processes for comparison with the forthcoming Jefferson Lab
data.
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