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An effective-Lagrangian framework for K� photoproduction from the proton is presented. The proposed model
is applicable at forward kaon angles and photon lab energies from threshold up to 16 GeV. The high-energy
part of the p(γ , K+)�0 and p(γ, K0)�+ amplitudes is expressed in terms of Regge-trajectory exchange in the
t channel. By supplementing this Regge background with a number of s-channel resonances, the model is extended
toward the resonance region. The resulting “Regge-plus-resonance” (RPR) approach has the advantage that the
background contributions involve only a few parameters, which can be largely constrained by the high-energy
data. This work compares various implementations of the RPR model, and explores which resonance contributions
are required to fit the data presently at hand. It is demonstrated that, through the inclusion of one K and two
K∗ trajectories, the RPR framework provides an efficient and unified description of the K+�0 and K0�+

photoproduction channels over an extensive energy range.
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I. INTRODUCTION

The goal of attaining a full understanding of the nucleon’s
internal structure, as reflected, for example, in its excitation
spectrum, is proving to be an elusive one. From the outset,
this effort has been thwarted by several complicating factors,
the most fundamental being the nonperturbative nature of
the strong interaction at hadronic energy scales. Although
significant progress has been made in solving QCD on the
lattice, the interpretation of dynamical hadronic processes
still hinges to a large extent on models containing some
phenomenological ingredients.

In the ongoing search for the link between quark-gluon
and hadronic degrees of freedom, an impressive amount of
effort has been directed toward the study of photo- and
electroinduced meson production. Whereas the initial focus
of these experiments was mostly on πN final states, in recent
years the primary interest has shifted to reaction channels like
γ (∗)N → ωN, ηN, ππN , and KY [1]. It is believed that a
study of these processes may reveal the existence of some of the
“missing” resonances, which have been predicted by various
constituent-quark models [2,3], but remained unobserved in
the πN channel. Proof of their existence would constitute a
strong confirmation of the validity of the constituent-quark
concept.

Associated open-strangeness production reactions are par-
ticulary interesting due to the creation of a strange quark-
antiquark pair. Over the past years, the p(γ,K)Y database
[4–6] has been supplemented with new high-precision γp →
K+� and γp → K+�0 data from the CLAS [7], LEPS
[8], and GRAAL [9] collaborations, whereas SAPHIR has
provided a new and detailed analysis of the γp → K0�+
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channel [10]. In light of these data, and with new double
polarization [11] and electroproduction [12] results on the
verge of becoming available, we are perhaps nearer than ever
to unraveling the KY production mechanism.

The treatment of electromagnetic KY production can be
efficiently realized in an effective-field framework, where
the particle interactions are modeled by means of effective
Lagrangians. A great deal of effort has been devoted to
the development of tree-level isobar models, in which the
scattering amplitude is constructed from a number of lowest-
order Feynman diagrams [13–15]. It is obvious that these
models have their limitations. They do not explicitly include
higher-order mechanisms like channel couplings and final-
state interactions. Furthermore, the decay widths commonly
introduced to account for the resonances’ finite lifetimes,
violate the unitarity constraint. To resolve some of these
problems, one can resort to a coupled-channels analysis,
as is done for example in Refs. [16–18]. However, these
analyses also face unresolved challenges, such as accounting
for the ππN channels, which are responsible for about
half of the γN total cross section in the higher-mass N∗
region.

It can be argued that for many channels a firmly established
reaction mechanism is still lacking. Because of the large
number of parameters involved, clearing up issues such
as the choice of gauge restoration procedure [19] or of
hadronic form factors in the context of a coupled-channels
framework constitutes a gigantic task. For resolving such
ambiguities at the level of the individual channels, tree-level
models represent a highly valuable asset, precisely because
of their relative simplicity. In addition, the extension from
photo- to electroproduction is relatively straightforward in
a tree-level model, whereas, to our knowledge, no coupled-
channels approach to kaon electroproduction has as yet been
proposed.
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In Ref. [20], we presented a tree-level effective-field model
for the γp → K+� photoproduction process, valid at forward
angles and for photon energies ranging from threshold up to
16 GeV. The model differs from traditional isobar models
in its description of the background contribution to the
amplitude, which involves the exchange of the K(494) and
K∗(892) Regge trajectories in the t channel. To this Regge
background, a number of nucleon resonance diagrams are
added. By construction, these resonant contributions vanish
at high energies, and a proper high-energy behavior of
the amplitude is ensured. An important advantage of this
“Regge-plus-resonance” (RPR) strategy is that the background
coupling constants are heavily constrained by the high-energy
p(γ,K+)� data, leaving the N∗ couplings as the only free
parameters in the resonance region.

In this work, the RPR prescription is applied to the
p(γ,K)� photoproduction processes. These open a new
window onto the hadronic spectrum because � resonances
(�∗s) can participate in the reaction mechanism, unlike �

production. While this implies more resonance candidates
to be considered, the number of model parameters in the
K� channels can be kept within bounds by exploiting the
isospin relations between the γp → K+�0 and γp → K0�+
coupling constants.

This article is organized as follows. In Sec. II the main
ingredients of the RPR model are reviewed. The procedure
of t-channel reggeization of the high-energy amplitude is
discussed in Sec. II A, whereas Sec. II B elucidates how the
constructed model can be extended to the resonance region
by the addition of a limited set of s-channel resonances.
The RPR formalism is then applied to a common description
of the two γp → K� processes. The high-energy Regge
amplitudes are constructed in Sec. III, with Sec. III A focusing
on γp → K+�0 and Sec. III B on γp → K0�+. In Sec. IV
we look for the appropriate N∗ and �∗ resonances with
which to supplement the Regge background and discuss to
what extent the presented model succeeds in reproducing the
available resonance-region data. Finally, in Sec. V we state our
conclusions.

II. THE RPR MODEL

A. t-channel reggeization

Since its initial formulation as an alternative approach to
quantum-mechanical potential scattering, Regge theory has
been extended far beyond its original scope. Regge’s starting-
point was to consider the scattering amplitude as a function of a
complex angular momentum variable [21]. Interestingly, poles
of the scattering amplitude turned out to correspond to resonant
states. Regge theory further leads to a natural classification
of these resonances into a number of families, with identical
internal quantum numbers but different spins J . Empirically,
the hadronic spectrum is observed to exhibit the property that
members of such a family, or “Regge trajectory,” are connected
by an approximately linear relation Ji = α(m2

i ) between their
spins and squared masses. Figure 1 illustrates this point for the
K(494) and K∗(892) trajectories.
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FIG. 1. (Color online) Chew-Frautschi plots for the K(494) and
K∗(892) trajectories. The meson masses are from the Particle Data
Group [22].

The underlying philosophy of the Regge formalism is as
follows. In modeling the reaction amplitude for the γp → KY

process at high energies, instead of considering the exchange
of a finite selection of individual particles, the exchange of
entire Regge trajectories is taken into account. This exchange
can take place in the t channel (kaonic trajectories) or
u channel (hyperonic trajectories). As such, Regge theory
offers an elegant way to circumvent the controversial issue
of modeling high-spin, high-mass particle exchange. The
Regge framework employed here applies to the so-called
“Regge limit” of extreme forward (in the case of t-channel
exchange) or backward (for u-channel exchange) scattering
angles, corresponding to small |t | or |u|, respectively. We focus
on the forward-angle kinematical region, implying t-channel
trajectory exchange.

Since the scope of our study extends from parameterizing
the p(γ,K)� amplitudes at high energies to unraveling their
detailed structure in the resonance region, we have opted to
incorporate the Regge formalism into a tree-level effective-
Lagrangian model. This approach was pioneered by Guidal
and Vanderhaeghen in their treatment of high-energy electro-
magnetic π and K production [23–25]. In recent years, several
alternative implementations of Regge phenomenology have
been proposed, such as the reggeized unitary isobar model [26]
and quark-gluon strings model [27]. For conciseness, only the
basic ingredients of the Regge framework are recalled here. A
detailed derivation can be found in Ref. [20] and references
therein.

A linear meson trajectory αX(t), of which the lightest
member (or “first materialization”) X has a mass mX and
spin αX,0, is of the form

αX(t) = αX,0 + α′
X

(
t − m2

X

)
. (1)

The amplitude for t-channel exchange of the αX(t) trajectory
can be straightforwardly obtained, starting from the standard
Feynman amplitude for exchange of its first materialization
X. The procedure amounts to replacing the denominator of
the Feynman propagator with a Regge propagator:

1

t − m2
X

→ PX
Regge[s, αX(t)] . (2)
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The Regge amplitude can then be written as

MX
Regge(s, t) = PX

Regge[s, αX(t)] × βX(s, t) , (3)

with βX(s, t) the residue of the original Feynman amplitude,
to be calculated from the interaction Lagrangians at the γKX

and pXY vertices. For spinless external particles, the Regge
propagator can be written as [28]:

PX
Regge(s, t) =

(
s
s0

)αX(t)

sin[παX(t)]

{
1

e−iπαX(t)

}
πα′

X


[1 + αX(t)]
, (4)

with the scale factor s0 fixed at 1 GeV2. Equation (4) has poles
at nonnegative integer values of αX(t), hence the interpre-
tation that the Regge propagator effectively incorporates the
exchange of all members of a trajectory. In the physical plane
of the processes under study (t < 0), these poles are never
reached.

Expression (4) is valid only for so-called strongly degener-
ate trajectories. In principle, each Regge trajectory consists
of two “signature parts,” grouping the trajectory members
with positive and negative parity, respectively, and a separate
Regge amplitude should be accorded to each signature part.
Often, though, the two trajectory parts are observed to be
approximately degenerate. This is true for example for the
K(494) and K∗(892) trajectories, as can be appreciated from
Fig. 1. In that case, it can usually be assumed that the
positive- and negative-signature amplitudes have identical
residues, up to an unknown sign; this is referred to as
strong degeneracy. The two can then be added into a single
propagator, incorporating the simultanous exchange of both
trajectory parts. As is seen from Eq. (4), the phase of this
propagator can either be constant (1) or rotating (e−iπαX(t)),
depending on the relative sign between the residues of
the individual signature parts. For all propagators needed
in the treatment of electromagnetic KY production on the
proton, the assumption of degenerate trajectories turns out
to be a valid one [23–25].

Generalizing Eq. (4) to nonscalar particles is a nontrivial
task [29]. We adopt a pragmatic approach, which consists of
the following replacement in the spinless-particle propagator
of Eq. (4):

αX(t) → αX(t) − αX,0 , (5)

both in the exponent of s and in the argument of the gamma
function. This recipe ensures that the altered propagator has
poles at the physical manifestations of the trajectory, i.e., for
αX(t) � αX,0. The general Regge propagator thus takes the
form:

PX
Regge(s, t) =

(
s
s0

)αX(t)−αX,0

sin[παX(t)]

{
1

e−iπαX(t)

}

× πα′
X


[1 + αX(t) − αX,0]
. (6)

The above prescription allows one to construct the high-
energy amplitude by selecting the dominant trajectories in
the t channel. It turns out that, for fixed s, |PX

Regge(s, t = 0)|

increases with decreasing |αX(0)−αX,0| = α′
Xm2

X. Because all
meson trajectories have approximately the same slope α′

X, as
a rule of thumb those with a low-mass first materialization are
assumed to dominate. It should be kept in mind, though, that
the coupling strengths contained in the residues βX(t) [Eq. (3)]
also play a role. In the kaon sector, K(494) and K∗(892)
are by far the lightest states serving as first materializations,
hence their importance in modelling the various γp → KY

processes.

B. Including resonance dynamics

Regge phenomenology is a high-energy tool by construc-
tion, because the Regge amplitude built using the propagator of
Eq. (6) is essentially the asymptotic form of the full amplitude
in the s → ∞ limit. The experimental meson production cross
sections appear to exhibit this “asymptotic” Regge behavior
for photon energies down to about 4 GeV [24,25,30]. As
demonstrated in Refs. [11,23,31], however, even with the
asymptotic form of the propagators, the gross features of the
forward-angle pion and kaon photo- and electroproduction
observables in the resonance region are remarkably well
reproduced in a pure t-channel Regge model.

The above considerations have prompted us to adopt an
identical Regge description for both the high-energy amplitude
and the background contribution to the resonance-region
amplitude. It is evident that a model consisting exclusively
of background diagrams cannot be expected to account for all
aspects of the reaction dynamics. At low energies, the cross
sections exhibit structures which may reflect the presence of
individual resonances. These are incorporated into the RPR
framework by supplementing the reggeized background with a
number of resonant s-channel diagrams. For the latter, standard
Feynman propagators are assumed, in which the resonances’
finite lifetimes are taken into account through the substitution

s − m2
R → s − m2

R + imR 
R (7)

in the propagator denominators, with mR and 
R the mass and
width of the propagating state (R = N∗,�∗).

Further, the condition is imposed that the resonance
amplitudes vanish at high values of ωlab. This is accomplished
by including a Gaussian hadronic form factor at the K�R

vertices:

FGauss(s) = exp

{
−

(
s − m2

R

)2

�4
res

}
, (8)

with �res a universal cutoff mass, to be determined from
the resonance-region data. Our motivation for assuming a
Gaussian shape is explained in Ref. [20].

The RPR amplitude is shown schematically in Fig. 2. It
involves t-channel exchanges of kaon trajectories as well
as s-channel Feynman diagrams corresponding to individual
baryon resonances (R). In the high-energy regime (ωlab �
4 GeV), all resonant contributions vanish by construction, so
that only the Regge part of the amplitude remains.

One issue which may cloud the presented procedure is
double counting. However, because the γp → KY processes
are largely background-dominated, the few added s-channel
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FIG. 2. General forward-angle RPR ampli-
tude for the γp → KY process.

terms may be considered as relatively minor corrections, and
double counting is not expected to pose a very serious concern.

The strong and electromagnetic interaction Lagrangians
for coupling to resonances of various spins are contained
in Ref. [20] for the specific case of K+� photoproduction.
Generalizing these Lagrangians to the various K� channels is
fairly straightforward [32].

III. K� PHOTOPRODUCTION AT HIGH ENERGIES

A. The γ p → K+�0 process

We start with the K+�0 isospin channel because, to our
knowledge, it is the sole one with published high-energy
data. As the interaction Lagrangians for the p(γ,K+)� and
p(γ,K+)�0 processes are essentially identical, the K+�0

Regge amplitude can in principle be constructed in complete
analogy to the K+� one, as presented in our previous work
[20].

Given their low mass, the trajectories corresponding to
the K(494) and K∗(892) mesons are expected to dominate
the reaction mechanism. Using the prescription of Eq. (6),
the corresponding Regge propagators read:

PK(494)
Regge (s, t) =

(
s

s0

)αK (t) 1

sin[παK (t)]

×
{

1

e−iπαK (t)

}
πα′

K


[1 + αK (t)]
, (9)

PK∗(892)
Regge (s, t) =

(
s

s0

)αK∗ (892)(t)−1 1

sin[παK∗(892)(t)]

×
{

1

e−iπαK∗ (892)(t)

}
πα′

K∗(892)


[αK∗(892)(t)]
, (10)

with [33]

αK (t) = 0.70 GeV−2
(
t − m2

K

)
, (11)

αK∗(892)(t) = 1 + 0.85 GeV−2
(
t − m2

K∗(892)

)
. (12)

In Refs. [24,25] it is argued that apart from the K(494) and
K∗(892) trajectory exchanges, the Regge amplitude should
also include the electric contribution to the s-channel Born
term:

MRegge (γp → K+�0) = MK
Regge + MK∗(892)

Regge + Mp,elec
Feyn

×PK
Regge × (

t − m2
K

)
. (13)

This is necessary because of the gauge-breaking nature of
the K+-exchange diagram. In a typical effective-Lagrangian

framework, the Born terms Mp,K,�

Feyn in the s, t , and u channels
do not individually obey gauge invariance, whereas their sum
does. Because the magnetic parts of the vertices (∼ σµνq

ν)
are gauge invariant by construction, only the electric parts
(∼ γµ) are of concern. It has been shown that the procedure
of Eq. (13) leads to a much-improved description of the high-
energy p(γ,K+)� observables at low |t | [20,23,24].

When adopting interaction Lagrangians similar to those
of Ref. [20], the high-energy amplitude for the p(γ,K+)�0

process contains only three free parameters:

gK+�0p, G
v,t
K∗+(892) =

eg
v,t

K∗+(892)�0p

4π
κK+K∗+(892), (14)

with g
v,t

K∗+(892)�0p
the strong vector and tensor couplings to

the K∗+(892) vector meson trajectory. Assuming SU(3)-flavor
symmetry, the strong gK+�0p coupling constant can be related
to the well-known gπNN coupling [34,35]. When allowing for
a maximum deviation of 20% from the exact SU(3) value, the
following range emerges:

0.9 � gK+�0p√
4π

� 1.3 . (15)

The K∗(892) vector and tensor couplings are left entirely free.
Apart from the three parameters of Eq. (14), a choice

between constant or rotating trajectory phases needs to be
made. One may discriminate among the different alternatives
by comparing the various model calculations with the results
of high-energy measurements. Unfortunately, the published
p(γ,K+)�0 data for ωlab � 4 GeV are rather scarce. The
relevant low-|t | data comprise 48 differential cross section
points in total, at the selected energies ωlab = 5, 8, 11, and
16 GeV [36], as well as eight photon beam asymmetry points
at ωlab = 16 GeV [37]. No high-energy hyperon-polarization
measurements have been performed for the K� channels.

In our previous work on K� photoproduction [20], the
recoil asymmetry P was found to be particularly sensitive to
the details of the Regge amplitude, much more so than the
unpolarized cross section and photon beam asymmetry. The
absence of recoil-polarization data for the p(γ,K+)�0 process
constitutes a serious hindrance to constraining the various
Regge-model parameters. Although a pure t-channel approach
falls short of providing a complete quantitative description of
the resonance-region data, the Regge model has been observed
to reproduce all trends of the polarized and unpolarized
γp → K�/K+�0 observables, including P [23–25]. In
view of these considerations, the procedure followed in this
work amounts to discarding all Regge model variants which
fail in reproducing the sign of the recoil asymmetry in the
resonance region. Imposing this extra requirement reduces the
number of possible model variants to four. They are classified
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TABLE I. Fitted coupling constants for Regge model variants
describing both the high-energy p(γ, K+)�0 data [36,37] and the
sign of the recoil polarization in the resonance region [4]. The phase
options for the K(494) and K∗(892) trajectories are listed in the
second column. The last column mentions the attained χ2 value for
the high-energy data.

BG
mod.

K(494)/K∗(892)
phase

g
K+�0p√

4π
Gv

K∗+(892) Gt
K∗+(892) χ 2

1 rot. K , rot. K∗ 1.3 0.32 0.77 1.25
2 rot. K , rot. K∗ 1.3 0.33 −0.86 1.28
3 rot. K , cst. K∗ 1.3 −0.35 0.68 1.31
4 rot. K , cst. K∗ 1.3 −0.32 −0.87 1.27

in Table I according to the sign of G
v,t
K∗(892) and the phases of

the K(494) and K∗(892) trajectories. The smaller values of
χ2 as compared to what was found for the K� channel [20]
can be attributed to the significantly larger error bars for the
K+�0 high-energy cross sections.

A comparison between the calculated high-energy observ-
ables, resulting from the four Regge model variants of Table I,
and the data is shown in Figs. 3–4. Figure 5 displays the recoil
asymmetry in the resonance region for one representative
cos θ∗

K bin. As expected, the differential cross section (Fig. 3)
and photon beam asymmetry (Fig. 4) are rather insensitive
to the choices made with respect to the trajectory phases
and the signs of the coupling constants. However, the overall
positive sign of the recoil asymmetry is only compatible with
the four specific sign and phase combinations from Table I.
In particular, a strong correlation between the phase of the
K∗(892) trajectory and the sign of the corresponding vector
coupling is observed. A rotating (constant) K∗(892) phase
requires a positive (negative) Gv

K∗ coupling.
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FIG. 3. Low-t differential p(γ, K+)�0 cross sections at photon
lab energies of 5 (•), 8 (�), 11 (�), and 16 (�) GeV. The left panel
corresponds to the Regge model variants with a rotating phase for
the K and K∗ trajectories. In the right panel, the model variants with
a rotating K and constant K∗ phase are shown. The data are from
Ref. [36].
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FIG. 4. Results for the forward-angle p(γ,K+)�0 photon beam
asymmetry at ωlab = 16 GeV. The curves for the various background
models are nearly indistinguishable. For the sake of clarity, only the
result for model variant 1 is displayed. The data are from Ref. [37].

It is clear from Table I and Figs. 3–4 that the high-energy
data do not allow further discrimination between the retained
Regge model variants, as all four provide a comparably good
description.

B. Common analysis of p(γ, K+)�0 and p(γ, K 0)�+

Due to the lack of γp → K0�+ data for ωlab � 4 GeV, we
have opted to constrain the Regge amplitude for this process
against measurements performed at lower energies instead.
This is deemed a feasible strategy, as the Regge model is
known to provide very reasonable descriptions of the K� and
K+�0 photoproduction data in the resonance region [23–25].

In principle, isospin arguments allow one to transform a
reaction model for γp → K+�0 into one for γp → K0�+.
By exploiting the fact that the �+ and �0 hyperons are
members of an isotriplet, any coupling constant occurring
in the K+�0 photoproduction amplitude can be converted
into the corresponding p(γ,K0)�+ parameter. The strong
coupling strengths are linked via SU(2) Clebsch-Gordan co-
efficients, whereas for relating the electromagnetic couplings,
experimental input in the form of 
K∗→Kγ decay widths is
required. The isospin relations used in this work can be found
in the Appendix.

In practice, developing a common description for isospin-
related channels is often less straightforward than one might
infer from the preceding paragraph. Subtle interference effects
might, for example, cause certain contributions to be masked

BG model 1
BG model 2
BG model 3
BG model 4

0.4 < cosθ < 0.6

P

ωlab (GeV)
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-0.5

0

0.5
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FIG. 5. Results for the p(γ,K+)�0 recoil asymmetry in the
resonance region, for 0.4 < cos θ∗

K < 0.6. The data are from Ref. [4].
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in one channel, but strongly enhanced in the other. In
fact, reconciling the p(γ,K+)�0 and p(γ,K0)�+ model
predictions in the resonance region has proven challenging,
as the measured �+ cross-sections are considerably smaller
than those for the �0 [6,7,10]. This observation is in apparent
contradiction with the relation

gK0�+p =
√

2 gK+�0p (16)

(see Appendix), with similar expressions holding when a
N∗,K∗ or Y ∗ resonance is involved at the vertex.

In isobar models, this difficulty is often circumvented by
strongly reducing the gK�p coupling in both channels [thus
disregarding the SU(3) constraints of Eq. (15)], and/or by
carefully counterbalancing the superfluous strength in the
K0�+ channel through destructive interferences induced by
other contributions [13,14]. It shall be demonstrated that, in
the context of the RPR approach, this issue can be elegantly
resolved at the level of the background terms.

It will become clear that the p(γ,K+)�0 Regge model
variants proposed in Sec. III A cannot be readily extended to
the K0�+ channel. Since the γKK vertex is proportional to
the kaon charge, the K-trajectory exchange diagram, as well
as the accompanying gauge-restoring s-channel electric Born
term, do not contribute to the K0�+ amplitude. Therefore, the
equivalent of Eq. (13) in this channel simply reads:

MRegge (γ p → K0�+) = MK∗(892)
Regge . (17)

Figure 6 displays the predictions for the p(γ,K0)�+
differential cross section for one particular cos θ∗

K bin in the
resonance region, using the above-mentioned form for the
amplitude. The G

v,t

K∗0(892) couplings have been determined
through the isospin relations from the Appendix, starting
from the fitted values listed in Table I. It is instantly clear
that the model parameters determined from the high-energy
γp → K+�0 data, when converted to the K0�+ channel,
result in cross sections that overshoot the experimental data by
a factor of 10.

Thus, an amplitude of the type of Eq. (17) apparently does
not suffice to provide a reasonable description of the γp →
K0�+ data. In this respect, we deem it relevant to mention
the K0�+ total cross-section result obtained by Guidal and

BG model 1
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dσ
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Ω
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BG model 2

0.4 < cosθK
* < 0.6

 (

BG model 3

0.4 < cosθK
* < 0.6

 

BG model 4
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FIG. 6. Results for the p(γ, K0)�+ differential cross section in
the resonance region for 0.4 < cos θ∗

K < 0.6, obtained by converting
the model parameters from Table I to the K0�+ channel. The data
are from Ref. [10].

Vanderhaeghen [31] by means of Eq. (17). As confirmed to us
by the authors [38], the curves shown in Fig. 3 of their article
do not take into account the isospin factor of

√
2, relating the

strong gK+�0p and gK0�+p couplings [Eq. (16)]. Inclusion of
this factor would increase the quoted cross section by a factor
of two, considerably worsening the quality of agreement with
the data.

A parallel can be drawn between the Regge descrip-
tions of photoinduced kaon and pion production. Indeed,
in Refs. [23–25], Guidal and Vanderhaeghen modelled the
charged-π photoproduction channels through π and ρ tra-
jectory exchanges. In π0 production, on the other hand, an
ω trajectory was introduced to compensate for the vanishing
π -exchange diagram. Similarly, in the absence of a K(494)
contribution to the K0�+ amplitude, a higher-mass trajectory
may become important in this channel, serving to counterbal-
ance the K∗(892) strength.

It can be intuitively understood that the strong destructive
interference needed to reduce the predicted cross sections to
the level of the data (see Fig. 6) can be efficiently realized
when the added contribution exhibits an angular distribution
comparable to that of the K∗(892)-exchange diagram. This
implies that a natural-parity particle should be involved.
A second K∗ trajectory is likely to realize the required
effect. As it turns out, the PDG tables hint at the presence
of such a trajectory, with the K∗(1410) vector particle as
first materialization and the K∗

2 (1980) as a probable second
member. However, whereas the meson trajectories tend to
possess a more or less universal slope, the slope of this
experimental K∗(1410) trajectory is significantly smaller than
those of the well-known K(494) and K∗(892) trajectories, i.e.,
0.53 GeV−2 as compared to 0.7 and 0.85 GeV−2.

As the properties of the K∗(1410) trajectory cannot be put
on solid grounds with the available experimental information,
we also turned our attention to the predictions of a constituent-
quark model (CQM) calculation of the kaon spectrum. The
Lorentz covariant quark model developed by the Bonn group
[39] provides a satisfactory description of the light meson
masses and decay properties. Figure 7 displays the results of
the calculations using two different options (A and B) for the

Bonn model B

PDG

Bonn model A

K*(1410)

K*2(1980)

α’=0.53 GeV-2

α’=0.83 GeV-2

α’=0.85 GeV-2

t (GeV2)

α(
t)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

FIG. 7. (Color online) Comparison between the experimental
K∗(1410) trajectory and the Bonn-model predictions [39]. The
experimental meson masses are from the Particle Data Group [22].

045204-6



REGGE-PLUS-RESONANCE TREATMENT OF THE . . . PHYSICAL REVIEW C 75, 045204 (2007)

Dirac structure of the confinement potential. After selecting
from the predicted spectra the states most likely to correspond
to the K∗(1410) and K∗

2 (1980) resonances, and supplementing
these with a set of suitable higher-spin states, a linear relation
presents itself.

The slopes of the theoretical and experimental trajectories
clearly differ. Strikingly, however, the two calculated curves
have practically identical slopes, which are also perfectly
compatible with those of the K(494) and K∗(892) trajectories
[Eqs. (11)–(12)]. The calculated masses and spins of the
members of the K∗(1410) trajectory are nearly perfectly fitted
by a linear curve.

We have opted to use the calculated value of 0.83 GeV−2,
corresponding to the Bonn-model variant A, leading to a
trajectory of the form

αK∗(1410)(t) = 1 + 0.83 GeV−2
(
t − m2

K∗(1410), PDG

)
, (18)

with mK∗(1410),PDG = 1414 MeV. The corresponding Regge
propagator takes on the form of Eq. (10). Again, the trajectory
phase may either be constant or rotating.

After adding the K∗(1410)-trajectory exchange diagram,
the γp → K0�+ Regge amplitude is given by

MRegge (γp → K0�+) = MK∗(892)
Regge + MK∗(1410)

Regge (19)

and the number of model parameters is increased by 2.
Contrary to the K∗(892) parameters, which are constrained by
the high-energy p(γ,K+)�0 data, the K∗(1410) vector and
tensor couplings remain as yet unknown, as does the matching
trajectory phase. In the absence of high-energy data for the
K0�+ channel, we fix the K∗(1410) parameters through a
fit to the forward-angle (cosθ∗

K > 0) part of the p(γ,K0)�+
differential cross-section data for the resonance region.

Table II displays the extracted K∗(1410) parameters for
each of the background models proposed in Sec. III A. The
values of the G

v,t

K∗0(892) couplings can be found from the

G
v,t
K∗+(892) values (Table I) by applying the relations from the

Appendix. It is clear from Table II that the K∗(892) and
K∗(1410) trajectory phases are strongly coupled. It can be
intuitively understood that destructive interference is strongest
when the same phase choice is adopted for both trajectories.
Because of its larger mass, the Regge propagator for the
K∗(1410) is smaller than the K∗(892) one, hence a larger

TABLE II. Extracted K∗0(1410) parameters for each of the
model variants from Table I. The trajectory phase options are given
in the second column, whereas the last column shows the attained
χ 2 value when comparing to the resonance-region p(γ,K0)�+

cross-section data.

BG
mod.

K∗(892)/K∗(1410) phase Gv

K∗0(1410)
Gt

K∗0(1410)
χ 2

1 rot. K∗(892), rot. K∗(1410) −3.0 −5.0 11.8
2 rot. K∗(892), rot. K∗(1410) −3.4 4.5 8.3
3 cst. K∗(892), cst. K∗(1410) −3.1 6.1 10.5
4 cst. K∗(892), cst. K∗(1410) −2.9 −6.3 10.2
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FIG. 8. Results for the p(γ,K0)�+ differential cross section in
the resonance region. The data are from Ref. [10].

coupling constant is needed to produce contributions of similar
magnitude.

The results for the p(γ,K0)�+ differential cross section
in the resonance region are shown in Fig. 8 for three bins in
the forward hemisphere of cos θ∗

K . Apart from the slight rise
with energy at cos θ∗

K ≈ 0.9, the order of magnitude of the
experimental curves is now reasonably well-matched by the
calculations. While this channel appears to be background-
dominated, some resonance dynamics are clearly missing in
the ωlab � 1.7 GeV region, especially at the more forward
angles. This will be remedied in the following section.

The inclusion of the K∗(1410) trajectory in the K0�+
channel also affects the high-energy observables. Figure 9

BG model 1
K*(892) contr.
BG model 1
K*(892) contr.

-t (GeV2)

dσ
/d

t (
µb

/G
eV

2 )

10
-4

10
-3

10
-2

10
-1

1

0 0.5 1 1.5 2

FIG. 9. (Color online) Predictions for the low-t differential
p(γ,K0)�+ cross sections at photon lab energies of 5, 8, 11, and
16 GeV (the highest energy corresponding to the smallest cross
section) using the background model variant 1. The full curves
represent the total amplitude, whereas the dashed curves show the
contribution of the K∗(892) trajectory.
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displays a prediction for the p(γ,K0)�+ differential cross
section, using the Regge model variant 1, at photon lab
energies of 5, 8, 11, and 16 GeV. The other three model
variants result in a comparable behavior for the cross section.
When comparing Fig. 9 with Fig. 3, it is clear that the Regge
amplitude of Eq. (19), incorporating both K∗ trajectories (full
lines), produces cross sections of the same order of magnitude
as those for the γp → K+�0 process. However, use of
Eq. (17), accounting for the K∗(892) trajectory exchange only
(dashed lines), leads to cross sections that are higher by a
factor of 2 up to 10, depending on the energy. It can be
seen that the relative importance of the K∗(1410) contribution
diminishes with increasing photon energy. We wish to stress
that Fig. 9 shows a prediction for the p(γ,K0)�+ cross
section at high energies, obtained with background parameters
constrained by the resonance-region data. A high-energy
measurement performed for this reaction channel would prove
extremely useful in putting these predictions to a stringent
test.

IV. K� PHOTOPRODUCTION IN THE RESONANCE
REGION

With a view to weighing the importance of the various
N∗ and �∗ contributions, we perform not merely one, but a
series of fits to the resonance-region data. The resonances are
added one at a time, allowing one to check the impact of each
candidate on the attained value of χ2.

We analyze the high-precision p(γ,K+)�0 data from
CLAS, comprising an extensive set of unpolarized cross
sections and hyperon polarizations [4,7]. Photon-beam asym-
metry data for the second and third resonance regions, taken
specifically at forward kaon angles, have been provided by the
LEPS collaboration [5]. In addition, the GRAAL collaboration
has been involved in beam- and recoil-polarization measure-
ments in the first resonance region over an extensive angular
range [9]. For p(γ,K0)�+, the differential cross section and
recoil-asymmetry data provided by the SAPHIR collaboration
are employed [10].

As this work hinges on t-channel reggeization, only the
forward-angle portion of the various data sets is considered
for fitting purposes. For the copious CLAS data the restriction
cos θ∗

K > 0.35 is imposed, whereas for the LEPS, GRAAL,
and SAPHIR data the cos θ∗

K > 0.0 part is taken into account.
We opted for this particular selection of data points in order
to be consistent with our previous RPR study of the K+�

channel [20]. This leaves in total 618 data points with which
to adjust the model parameters. The quoted number includes
435 differential cross sections, 53 recoil asymmetries (49 from
CLAS and 4 from GRAAL) and 66 photon beam asymmetries
(45 from LEPS and 21 from GRAAL) for the K+�0 channel,
and for the K0�+ channel 60 differential cross sections plus
4 recoil asymmetry points. It is worth stressing that in our
RPR approach, the only parameters that remain to be fitted to
the resonance-region data are the resonance couplings and the
cutoff �res for the strong resonance form factors. Moreover,
for the masses and widths of the known resonances we assume

the PDG values [22] instead of treating them as free parameters
as is often done.

The complex issue of minimizing χ2 is tackled using a
combination of a simulated annealing algorithm (SAA) [33,40]
and the CERN MINUIT [41] package. Starting points for
minimization are obtained from the SAA, which was designed
to produce parameters near the global minimum of the χ2

surface. The parameters provided by the SAA are then fed
into MINUIT to pinpoint the location of each minimum more
precisely, and obtain an error matrix for the fitted parameters.
In previous studies [42,43] we have used a genetic algorithm
and many calculations for each model variant to explore
parameter space more fully. In the present case we have a
large number of model variants, making a more exhaustive
investigation too cumbersome.

In the literature, there is some diversity of opinion about
the resonant contributions to the p(γ,K)� channels. Most
of the published models are based on the SAPHIR data
released in the late 1990s, whereas the few analyses that
employ the most recent data sets appear to lead to different
conclusions. Since the K+�0 photoproduction data, unlike
the K+� ones, do not exhibit an explicit resonant structure,
it was long deemed unnecessary to introduce any “missing”
states in the � channels [14,16,19]. The new data, however,
are characterized by significantly reduced error bars, so that
a detailed analysis may reveal effects previously clouded by
experimental uncertainty. It has been shown that the K0�+
observables in particular may point to a second S11 resonance
[10], indications of which have also been reported for the
K� channel [18]. However, the recent analysis of the K+�0

and K0�+ photoproduction channels by Sarantsev et al. [15]
calls for the inclusion of missing D13(1870),D13(2170), and
P11(1840) states.

As each resonant contribution implies the introduction of
at least one parameter, we aim at keeping them at a strict
minimum. We therefore consider only resonances with spin
J � 3/2 and a mass below 2 GeV. We further limit ourselves
to the established PDG resonances with a star classification of
two or higher. No “missing” states are included at this point.

Table III gathers the combinations of nucleon and �

resonances assumed in the various calculations. All resonance
sets (RS) A through I are combined with each of the four back-
ground options constructed in Sec. III. This amounts to 36 RPR
model variants. The listed values of χ2 stem from a comparison
of the computed p(γ,K+)�0 and p(γ,K0)�+ observables
with the resonance-region data of Refs. [4,5,7,9,10]. The
simplest resonance set, RS A, corresponds to the standard
combination of states assumed in most of the early isobar
calculations [14,44]. As in the K� channel, the “core”
N∗ set consists of the S11(1650), P11(1710), and P13(1720)
resonances. Two �∗ states, S31(1900) and P31(1910), each
having spin 1/2 and thus involving one extra free parameter,
are also included in RS A. We further consider three additional
spin-3/2 resonances: P13(1900),D33(1700), and P33(1920).

From Table III, a number of trends may readily be spotted.
Only background model (BGM) 1 fails to produce a χ2 smaller
than 3.5 in combination with any of the resonance sets. BGM
2 leads to somewhat better results, although 25 parameters are
required to reduce χ2 below 3.6. Both of the above-mentioned
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TABLE III. Combinations of resonances used in the calculations. The second column mentions the number of free parameters
(NFP) for each model variant, not including the background couplings. The last four columns list the values of χ2 attained by
combining each resonance set (RS) with background options 1 through 4 from Table I, and adjusting the resonance parameters
to the resonance-region data.

RS NFP N∗ core P13(1900) S31(1900) P31(1910) D33(1700) P33(1920) χ 2 for BG mod.

1 2 3 4

A 10 � — � � — — 10.4 6.0 9.0 3.8
B 15 � � � � — — 4.4 4.0 4.4 3.4
C 20 � � � � � — 3.5 3.6 2.2 2.1
D 19 � � — � � — 3.5 3.7 2.4 2.3
E 19 � � � — � — 3.7 3.8 3.1 2.4
F 20 � � � � — � 3.5 3.7 3.2 2.6
G 19 � � — � — � 3.6 3.7 3.6 2.9
H 19 � � � — — � 3.7 4.1 3.3 2.7
I 25 � � � � � � 3.5 2.8 2.0 2.0

models assume rotating phases for all Regge trajectories, so
one may conclude that this choice—though adequate for the
high-energy description—is less suitable for the resonance
region. The models assuming constant K∗(892) and K∗(1410)
phases along with a rotating K(494) phase, i.e., BGMs 3 and
4, perform considerably better. Although the minimal value
of χ2 = 2.0 is identical for both model variants, BGM 4
exhibits significantly less need for the inclusion of additional
resonances than BGM 3. This is evident when comparing
the χ2 values found for the resonance sets with the smallest
(RS A) and largest (RS I) number of free parameters. Note also
that all BGM-4 variants with more than 15 free parameters
have a χ2 below 3.0, contrary to BGM 3, for which only
three of the resonance sets (C, D, and I) perform this well.
It can be seen that BGM 4 consistently provides the best fit
to the data, irrespective of which resonance contributions are
added. This may signify that the resonance-region data prefer
a negative sign for the K∗(892) tensor coupling, as in BGM 4,
rather than a positive one as is the case for BGM 3
(see Table I).

Table III also prompts a number of conclusions regarding
the resonant structure of the amplitudes. Comparing RS A
and B shows that adding the P13(1900) state significantly
improves χ2 for all four Regge model variants. However, the
conclusions with regard to the � resonances clearly depend on
the background choice. The general trends for the “preferred”
background models 3 and 4 are largely comparable, however.
Including the D33(1700) state considerably reduces χ2, in
contrast to P33(1920), which has a fairly limited impact on
the quality of the fit (compare RS C to F, D to G, and E to
H). Removing either S31(1900) or P31(1910) does not spoil the
agreement with the data, indicating that only a single spin-1/2
� resonance is required, the parity of which remains unclear.

Judging by the χ2 values from Table III, the two RPR
model variants providing the best common description of
the high- and low-energy p(γ,K)� observables are those
assuming background options 3 and 4, combined with the most
complete resonance set, RS I. These models will be referred
to as RPR-3 and RPR-4, respectively. The specifications for
both are summarized in Table IV.

The results of the RPR-3 and RPR-4 calculations for the
various p(γ,K)� observables are compared to the world data
in Figs. 10–14. The curves indicated as “BG” correspond
to the background contributions to the full RPR amplitudes.
Also displayed are the results for two alternative RPR model
variants, consisting of the “core” resonance set A from Table III
in combination with background model variants 3 and 4,
respectively.

Figure 10 shows the p(γ,K+)�0 differential cross section
as a function of ωlab. Both RPR-3 and RPR-4 succeed
remarkably well in reproducing this observable, including
the subtle “shoulder” in the energy dependence at ωlab ≈
1.75 GeV (W ≈ 2.05 GeV), which is likely to arise from
destructive interference of the background with resonances in
the 1900-GeV mass range. The “core” models, containing only
lower-mass resonances, clearly fall short on this account. In
addition, they seriously underestimate the value of the cross-
section maximum at the more backward kaon angles. Similar
to the K� case, the Regge model produces smooth curves.
Toward the highest ωlab measured by CLAS, it describes
the unpolarized data without the inclusion of any resonant
diagrams. For ωlab � 2 GeV (W � 2.15 GeV), s-channel
contributions are obviously required.

The computed recoil polarization P and photon beam
asymmetry � are shown in Figs. 11 and 12. Both observables
are well reproduced by RPR-3 and RPR-4. Again, the Regge

TABLE IV. RPR model variants providing the
best common description of the p(γ,K+)�0 and
p(γ,K0)�+ data from threshold up to 16 GeV in
photon energy. The Regge background model (BGM)
and resonance set (RS) are given, using the numbering
from Tables I and III. Also listed are the partial χ 2 values
for the K+�0 and K0�+ channels, as well as the total
χ 2.

RPR BG mod. RS χ 2
K+�0 χ 2

K0�+ χ 2

RPR-3 3 I 1.8 3.8 2.0
RPR-4 4 I 1.9 2.6 2.0

045204-9



CORTHALS, VAN CAUTEREN, RYCKEBUSCH, AND IRELAND PHYSICAL REVIEW C 75, 045204 (2007)

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

1.5 2 2.5 3

RPR-3

0.75 < cosθK
*< 0.95

RPR-4

0.75 < cosθK
*< 0.95

0.55 < cosθK
*< 0.75
Full ampl.
BG contr.
Core ampl.

dσ
/d

Ω
 (

µb
/s

r) 0.55 < cosθK
*< 0.75

0.35 < cosθK
*< 0.55

ωlab (GeV)

0.35 < cosθK
*< 0.55

ωlab (GeV)
1.5 2 2.5 3

FIG. 10. (Color online) Energy dependence of the differential
p(γ, K+)�0 cross sections in the resonance region, for a number
of representative bins in cos θ∗

K . The full curves represent the
complete result, the dotted curves show the contribution of the
Reggeized background (BG) amplitude, whereas the dot-dashed
curves correspond to RPR model variants containing only the “core”
resonance set A from Table III (see text). The data are from CLAS [7].
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FIG. 11. (Color online) Energy dependence of the p(γ, K+)�0

recoil polarization for those bins of cos θ∗
K considered in the fitting

procedure. Line conventions are as in Fig. 10. The data are from
CLAS [4].

-0.5

0

0.5

1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0.5 0.6 0.7 0.8 0.9 1

RPR-3

2.3 GeV < ωlab < 2.4 GeV

Full ampl.
BG contr.
Core ampl.

RPR-4

2.3 GeV < ωlab < 2.4 GeV

1.9 GeV < ωlab < 2 GeV

Σ 
=

 (
σ ⊥

 -
 σ

||)
 / 

(σ
⊥
 +

 σ
||)

1.9 GeV < ωlab < 2 GeV

1.5 GeV < ωlab < 1.6 GeV

cosθK
*

1.5 GeV < ωlab < 1.6 GeV

cosθK
*

0.5 0.6 0.7 0.8 0.9 1

FIG. 12. (Color online) Results for the forward-angle
p(γ,K+)�0 photon beam asymmetry, for three representative bins of
ωlab, corresponding to center-of-mass energy bins 2.28 GeV <

W < 2.32 GeV, 2.11 GeV < W < 2.15 GeV, and 1.92 GeV < W <

1.97 GeV. Line conventions are as in Fig. 10. The data are from
LEPS [5].

0

0.05

0.1

0.15

0

0.05

0.1

0.15

0

0.05

0.1

0.15

1.25 1.5 1.75 2 2.25 2.5

RPR-3

0.8 < cosθK
*< 1

RPR-4

0.8 < cosθK
*< 1

0.4 < cosθK
*< 0.6

dσ
/d

Ω
 (

µb
/s

r) 0.4 < cosθK
*< 0.6

0 < cosθK
*< 0.2

Full ampl.
BG contr.
Core ampl.

ωlab (GeV)

0 < cosθK
*< 0.2

ωlab (GeV)
1.25 1.5 1.75 2 2.25 2.5

FIG. 13. (Color online) Energy dependence of the differential
p(γ,K0)�+ cross sections in the resonance region, for a number of
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K . Line conventions are as in Fig. 10. The
data are from SAPHIR [10].
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contribution in itself provides a good approximation of the
experimental hyperon polarization. This justifies the choice
to constrain the Regge model variants by requiring them to
predict the correct sign for P in the resonance region. In their
description of the recoil asymmetry, the “core” models perform
comparably to RPR-3 and RPR-4, indicating that the size of
the error bars for this observable hampers the extraction of
information on the underlying resonance structure. While the
Regge and core amplitudes reproduce the sign of the photon
beam asymmetry, its magnitude and energy dependence can
be explained only by a reaction model containing a sufficiently
large number of resonances. The impact of the resonant part
of the amplitude on P and � persists up to significantly higher
energies than was the case for the unpolarized cross section.
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FIG. 15. (Color online) Energy dependence of the p(γ,K+)�0 double-polarization observables Cx (left panels) and Cz (right panels) for
two bins in cos θ∗

K . Line conventions are as in Fig. 10.

The results for the p(γ,K0)�+ channel are shown in
Figs. 13 and 14. The differential cross section, displayed in
Fig. 13, is quite well reproduced. As explained in Sec. III B, the
good performance of the background models in this channel
hinges entirely on the inclusion of the K∗(1410) trajectory.
Specifically, this trajectory provides the necessary destructive
interference to counteract the sharp rise of the cross section
brought about by the K∗(892) contribution (Fig. 6). At the
most forward kaon angles, the computed cross sections can be
seen to exhibit a brief increase around 2.5 GeV, not observed in
the data, before dipping back down to meet their high-energy
values (Fig. 9).

In Fig. 14, the p(γ,K0)�+ recoil asymmetry is presented.
Because only four data points are available for cos θ∗

K > 0,
this result may be considered more as a prediction than as the
actual outcome of a fit. The background contribution equals
zero because of the constant phase assumed for the K∗(892)
and K∗(1410) trajectories, which are the only ingredients of
the Regge model in the K0�+ channel. Real propagators for
K∗(892) and K∗(1410) result in a real amplitude, and since
P is related to the amplitude’s imaginary part, it vanishes for
this background choice. The RPR-3 model provides a slightly
better overall description of P .

Summarizing, Figs. 10–14 demonstrate the ability of the
proposed RPR strategy to provide a consistent description of
the p(γ,K+)�0 and p(γ,K0)�+ processes over an extensive
energy region. Contrary to the high-energy data, which do
not unambiguously constrain the phase of all contributing
trajectories, the resonance-region data clearly prefer a rotating
phase for the K(494) trajectory and a constant phase for
the K∗(892) one. Incidentally, the same phase options were
also identified as the most likely one in our treatment of
K� photoproduction [20]. The K∗(1410) phase should match
the choice made for K∗(892). Apart from the standard N∗
“core” set, we identified P13(1900) as a dominant resonant
contribution. The spin-3/2 resonance D33(1700) was also
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shown to be important, as well as the spin-1/2 states S31(1900)
and P31(1910), the inclusion of either of which was found to
be sufficient.

Finally, anticipating the publication of the p(γ,K+)Y
double-polarization data from CLAS [11], we show predic-
tions for Cx and Cz for the case of the K+�0 final state
(Fig. 15). It is clear that these observables are very sensitive to
the choice of background model, and that the background and
full RPR amplitudes lead to quite different results.

V. CONCLUSIONS

We have applied the RPR strategy, developed in Ref. [20]
for K+� photoproduction, to obtain a common description
of the γp → K+�0 and γp → K0�+ processes. The
framework employed involves the superposition of a limited
number of s-channel resonances onto a reggeized t-channel
background, resulting in a “hybrid” reaction amplitude valid
for photon lab energies from threshold up to 16 GeV.

For the p(γ,K+)�0 background amplitude, K+ and
K∗+(892) Regge-trajectory exchanges were assumed. We
addressed the question of whether a constant or a rotating
trajectory phase represents the optimum choice. The amount
of high-energy data proved too limited to constrain the model
parameters adequately. We therefore adopted the strategy of
retaining only those Regge model variants reproducing the sign
of the recoil asymmetry in the resonance region. By imposing
this requirement, the option of a constant K+ trajectory phase
could be ruled out.

In principle, isospin considerations allow one to transform
the K+�0 photoproduction amplitude into an amplitude appli-
cable to the γp → K0�+ process. Because the K0-exchange
diagram vanishes in photoproduction, the K0�+ amplitude
constructed in this manner would solely comprise K∗0(892)
exchange. Such a single-trajectory model, however, overshoots
the p(γ,K+)�0 data in the resonance region. With one of
the leading t-channel contributions missing, higher-mass kaon
trajectories are expected to start playing a role. Including the
exchange of the K∗(1410) trajectory was found to lead to
very good results. Due to the lack of high-energy p(γ,K0)�+
data, the K∗+(1410) parameters and trajectory phase had
to be determined against the resonance-region data. The
background model constructed in this manner was extended
to the high-energy domain, resulting in a prediction for K0�+
photoproduction at ωlab = 5–16 GeV.

We added s-channel diagrams to the reggeized background
amplitude. To minimize any double-counting effects that might
arise, the number of resonances was deliberately constrained.
Apart from the usual N∗ states S11(1650), P11(1710), and
P13(1720) nucleon resonances, we investigated possible con-
tributions of the two-star P13(1900), as well as of the �∗ states
S31(1900), P31(1910),D33(1700), and P33(1920).

Remarkably, the background option assuming rotating K

and constant K∗ trajectory phases, along with a negative
K∗(892) tensor coupling, was found to consistently provide
the best fit to the data, whichever resonance contributions
were added. The alternative parametrization with rotating
phases for all trajectories, which has always been regarded as

the “standard” choice for the high-energy description, turned
out to be incompatible with the resonance-region data. Apart
from the standard N∗ “core” states S11(1650), P11(1710), and
P13(1720), the two-star P13(1900) was identified as a necessary
contribution, irrespective of background assumptions. For
the �∗s, the situation is less clear. When assuming the
“preferred” background model described above, including
either of the spin-1/2 resonances S31(1900) or P31(1910) turned
out to be sufficient, whereas the spin-3/2 D33(1700) state
was found to be considerably more important than P33(1920).
These conclusions are, however, closely linked to the chosen
background parameterization.

Above all, it should be realized that pinpointing the dom-
inant s-channel diagrams as yet remains a delicate business.
While the inclusion of extra resonances invariably leads to a
decrease in χ2, this does not automatically imply an increased
likelihood for the constructed model. Furthermore, it is seldom
clear whether a similar agreement with the data cannot be
obtained using a different combination of states. Indeed, as the
number of model parameters increases, it becomes ever harder
to check whether the attained minimum in χ2 is truly a global
minimum, and whether other such minima exist. Evidently, this
challenge will prove even more daunting in coupled-channels
models than at tree level. It will, however, have to be addressed
carefully in future analyses of weak channels such as kaon
photoproduction.
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APPENDIX: ISOSPIN SYMMETRY IN THE K+�0/K 0�+

CHANNELS

In this Appendix, we sketch how isospin arguments can be
applied to establish relations between the coupling constants
for the γp → K+�0 and γp → K0�+ channels. Only the
relations specifically required for this work are mentioned. A
more extensive review can, e.g., be found in Ref. [14]. In what
follows, the isospin symmetry of the various meson and baryon
multiplets is assumed to be exact.

All hadronic decay processes relevant to the RPR treatment
of forward-angle K� photoproduction are either of the type
N → K� or � → K�. Because of the isovector nature of
the � particle, the hadronic couplings are proportional to the
Clebsch-Gordan coefficients:

gK�N ∼
〈
IK = 1

2
,MK ; I� = 1,M�

∣∣∣∣IN = 1

2
,MN

〉
, (A1)

gK�� ∼
〈
IK = 1

2
,MK ; I� = 1,M�

∣∣∣∣I� = 3

2
,M�

〉
. (A2)
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When adopting the following conventions for the isospin states
of the N,K , and � particles,

�+ ↔ −|I = 1,M = +1〉,
�0 ↔ +|I = 1,M = 0〉,
�− ↔ +|I = 1,M = −1〉;

(A3)

p ↔
∣∣∣∣I = 1

2
, M = +1

2

〉
↔ K+,

n ↔
∣∣∣∣I = 1

2
, M = −1

2

〉
↔ K0.

(A4)

These simple relations emerge:

gK0�+p =
√

2gK+�0p, (A5)

gK0�+�+ = − 1√
2
gK+�0�+ . (A6)

Contrary to the hadronic parameters, the relations be-
tween electromagnetic couplings have to be distilled from

experimental information. In principle, the value of the
magnetic transition moment κK∗K can be determined on the
basis of the proportionality κ2

K∗K ∼ 
K∗→Kγ . Within the
context of tree-level models, however, the coupling constants
are frequently considered as “effective couplings” in which, for
example, part of the final-state interaction effects are absorbed.
It is a common procedure to use only the ratios of the measured
decay widths to connect isospin-related coupling constants.
Using the PDG values for the K∗+(892) and K∗0(892) widths,
i.e. [22]:


K∗+(892)→K+γ = 50 ± 5 keV, (A7)


K∗0(892)→K0γ = 116 ± 10 keV, (A8)

the following expression is obtained:

κK∗0(892)K0 = −1.52 κK∗+(892)K+ . (A9)

The relative sign in the last expression was selected on the basis
of a constituent-quark model prediction by Singer and Miller
[45], which accurately reproduces the experimental widths of
Eqs. (A7) and (A8).
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