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Relativistic models for quasielastic neutrino scattering

M. C. Martı́nez, P. Lava, N. Jachowicz, J. Ryckebusch, and K. Vantournhout
Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

J. M. Udı́as
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We present quasielastic neutrino-nucleus cross sections in the energy range from 150 MeV to 5 GeV for
the target nuclei 12C and 56Fe. A relativistic description of the nuclear dynamics and the neutrino-nucleus
coupling is adopted. For the treatment of final-state interactions we rely on two frameworks succesfully applied
to exclusive electron-nucleus scattering: a relativistic optical potential and a relativistic multiple-scattering
Glauber approximation. At lower energies, the optical-potential approach is considered to be the optimum
choice, whereas at high energies a Glauber approach is more natural. Comparing the results of both calculations,
it is found that the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies
of 200 MeV. We argue that the nuclear transparencies extracted from A(e, e′p) measurements can be used to
obtain realistic estimates of the effect of FSI mechanisms on quasielastic neutrino-nucleus cross sections. We
present two independent relativistic plane-wave impulse approximation (RPWIA) calculations of quasielastic
neutrino-nucleus cross sections. They agree at the percentage level, showing the reliability of the numerical
techniques adopted and providing benchmark RPWIA results.
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I. INTRODUCTION

Neutrino interactions offer unique opportunities for explor-
ing fundamental questions in different domains of physics.
The mass of the neutrino remains one of the greatest puzzles
in elementary particle physics. In recent years, a number
of positive neutrino oscillation signals made the claims of
nonzero neutrino masses irrefutable [1] and boosted the
interest in this issue. Several experiments are running or
proposed to address intriguing questions in current neutrino
physics [2]: What does the neutrino mass hierarchy look like,
and what are the values of the oscillation parameters [1]? What
is the role of vacuum and matter-enhanced oscillations? Are
neutrinos representatives of CP violation in the leptonic sector?
Is the neutrino a Dirac or a Majorana particle? Does it have a
magnetic moment ? [3]

The interest in neutrinos goes beyond the study of the
particle’s intrinsic properties and extends to a variety of topics
in astro-, nuclear, and hadronic physics. Typical astrophysical
examples include the understanding of the energy production
in our sun, neutrino nucleosynthesis, and the synthesis of heavy
elements during the r process, the influence of neutrinos on
the dynamics of a core-collapse supernova explosion, and the
cooling of a protoneutronstar [4,5]. In many astrophysical
situations the neutrinos serve as messengers probing the
interior of dense and opaque objects that otherwise remain
inaccessible. The influence of neutrinos even extends to
cosmological questions such as the role of neutrinos in the
matter-antimatter asymmetry in the universe. In hadronic and
nuclear physics, neutrino scattering can shed light on a lot of
issues, including investigations of electroweak form factors,
the study of the strange quark content of the nucleon and
ν-induced pion production [3,6,7].

Despite the richness of phenomena they are involved in,
neutrinos remain elusive particles, only weakly interacting
and eager to escape detectors on the watch. The presence of
neutrinos, being chargeless particles, can only be inferred by
detecting the secondary particles they create when colliding
and interacting with matter. Nuclei are often used as neutrino
detectors, providing relatively large cross sections that offer
a broad variety of information. As a consequence, a reliable
interpretation of data involving neutrinos heavily counts on
a detailed knowledge of the magnitude of neutrino-nucleus
interactions under various circumstances. A precise knowl-
edge of the energy and mass number dependence of the
neutrino-nucleus cross section is essential to current and future
measurements. The energies that neutrinos can transfer to
nuclei depend on their origin. The “low” energy regime extends
to a few tens of MeV and relates to reactor, solar, and supernova
neutrinos. Atmospheric and accelerator neutrinos can carry
energies from a few hundred MeV to several GeV’s.

At intermediate energies (here defined as energies beyond
the nuclear resonance region), neutrino-nucleus interactions
have been studied within several approaches, investigating a
variety of effects. The relativistic Fermi gas (RFG) model
was employed in Refs. [8,9] to study the possibility of
measuring strange-quark contributions to the nucleon form
factors. The RFG takes into account the Fermi motion of the
nucleons inside the nucleus, Pauli blocking, and relativistic
kinematics, but neglects several other effects. Reference [10]
used a plane-wave impulse approximation description of the
nuclear system to estimate polarization asymmetry effects
in neutrino-induced nucleon knockout. Relativistic nuclear
effects were included in the calculations of Refs. [11–17],
using a relativistic shell-model approach for the study of
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neutral-current and/or charged-current neutrino-nucleus scat-
tering. In particular, in Refs. [12–14] results in the relativistic
plane-wave impulse approximation (RPWIA) were compared
to RFG calculations. It is shown that binding-energy effects
tend to vanish as the energy increases. Going one step further in
the complexity of the model calculation, the implementation of
the final-state interactions (FSI) of the ejected nucleon has been
achieved in different manners. In Ref. [18] a phenomenological
convolution model was applied to the RFG, showing that
nucleon rescattering can produce a reduction of the quasielastic
cross section as large as 15% at incoming neutrino energies
of about 1 GeV. A description of FSI mechanisms through
the inclusion of relativistic optical potentials is presented
in Refs. [12–16]. More specifically, Ref. [14] studies the
uncertainties derived from the use of different prescriptions for
the potentials. A reduction of the cross section of at least 14% is
found at incoming neutrino energies of 1 GeV. In Refs. [15,16],
important FSI effects arise from the use of relativistic optical
potentials within a relativistic Green’s function approach.
Apart from relativistic dynamics and FSI, other effects may
have an impact on neutrino-nucleus reactions. In Refs. [19,20]
the influence of relativistic nuclear structure effects, delta
and pion degrees of freedom, and RPA-type correlations
on neutrino-scattering cross sections was examined. Refer-
ence [21] includes long-range correlations, FSI, and Coulomb
corrections in 12C(νµ, µ−)12C∗ calculations. An alternative
method was proposed in Ref. [22], where it was shown that a
superscaling analysis of few-GeV inclusive electron-scattering
data allows one to predict charged-current neutrino cross
sections in the nuclear resonance region, thereby effectively
including delta isobar degrees of freedom.

In this article we compute the single-nucleon knockout
[often referred to as quasielastic (QE)] contribution to the
inclusive neutrino-nucleus cross sections, for energies and nu-
clei relevant to proposals such as Minerνa [3], Miniboone [6],
and Finesse [23]. We consider that the large variety of relevant
neutrino energies and the tendency to study neutrino-nucleus
interactions at increasing energies necessitate the use of
relativity. We employ two relativistic models for describing
neutrino-nucleus scattering within the impulse approxima-
tion: the relativistic distorted-wave impulse approximation
(RDWIA) developed by the Madrid-Seville group and the rel-
ativistic multiple scattering Glauber approximation (RMSGA)
developed by the Ghent group. Initially designed for the
description of exclusive electron-nucleus scattering processes,
both models have been succesfully tested against A(e, e′p)
data [24–30]. In addition, the nuclear transparencies predicted
by these models have proven to be mutually consistent in
the intermediate kinematic regime between 0.5 and 1 GeV
nucleon kinetic energies where both of them are deemed
reliable [29]. The RDWIA model used here has already been
employed in several neutrino-nucleus calculations [12–14]. To
our knowledge, this article is the first report of a relativistic
Glauber-inspired approach to neutrino-nucleus reactions. The
aim of this work is twofold. First, the relativistic models
available to date predict different results in the limit of
vanishing FSI, motivating a ‘new round’ of calculations. We
investigate the plane-wave limit of the RDWIA and RMSGA
approximations, aiming at providing benchmark RPWIA re-

sults. Second, we compute the effects of FSI within our models,
paying special attention to the comparison between RDWIA
and RMSGA results. It is well known that the inclusion
of FSI within inclusive calculations requires a considerable
computing effort. We propose a way to estimate FSI effects
for the QE contribution to the inclusive neutrino-nucleus cross
section using benchmark RPWIA results and transparency data
obtained from A(e, e′p) experiments. For the time being, the
effects of many-body currents, nucleon-nucleon correlations,
and contributions beyond quasielastic scattering processes as
multinucleon processes and pion production are neglected.

The outline of this article is as follows. In Sec. II we present
the RMSGA and RDWIA formalisms for the description of
the neutral- and charged-current neutrino-nucleus scattering
processes. Results of the numerical calculations are shown in
Sec. III. Section IV summarizes our findings.

II. FORMALISM

We derive expressions for neutrino and antineutrino neutral-
current (NC) reactions from nuclei that result in one emitted
nucleon

ν( ν) + A =⇒ ν( ν) + N + (A − 1). (1)

We also consider their charged-current (CC) counterparts

ν( ν) + A =⇒ l(l) + N + (A − 1), (2)

where l is the flavor of the lepton and A represents a nucleus
with mass number A. The connection between electromagnetic
and weak interactions makes that the analytical derivations
follow the same lines as those used in electron-nucleus
scattering. The main differences between neutrino and electron
interactions stem from the intrinsic polarization of the neutrino
because of the parity-violating character of the weak interac-
tion. Moreover, in weak interactions the focus is on inclusive
processes, whereas exclusive processes play a predominant
role in current subatomic research with electrons.

We describe these processes at lowest order in the elec-
troweak interaction, i.e., considering the exchange of one
charged vector boson. Figure 1 defines our conventions for
the kinematical variables. The four-momenta of the incident
neutrino and scattered lepton are labeled Kµ and K ′µ. Further-
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FIG. 1. Kinematics for the quasielastic neutrino-nucleus scatter-
ing process.
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more, K
µ

A,K
µ

A−1, and K
µ

f represent the four-momenta of the
target nucleus, the residual nucleus, and the ejected nucleon.
The xyz coordinate system is chosen such that the z axis lies
along the momentum transfer �q, the y axis along �k × �k′, and
the x axis in the scattering plane. The hadron reaction plane is
then defined by �kf and �q. We adopt the standard convention
Q2 ≡ −qµqµ for the four-momentum transfer.

A. Quasielastic neutrino-nucleus cross section

In the laboratory frame, the exclusive differential cross
section for the processes specified in Eqs. (1) and (2) can
be written as [31]

dσ = 1

β

∑
if

|Mf i |2 Ml

ε′
MA−1

EA−1

MN

Ef

d3�kA−1d
3�k′d3�kf (2π )−5

× δ4
(
Kµ + K

µ

A − K ′µ − K
µ

A−1 − K
µ

f

)
, (3)

where
∑

if indicates sum and/or average over initial and final
spins. Dealing with neutrinos, the relative initial velocity β

can trivially be put to 1. The factor Ml/ε
′ stems from the

normalization of the outgoing lepton spinor and becomes 1
for NC reactions. Integrating over the unobserved momentum
of the recoiling nucleus �kA−1, as well as over | �kf |, results
in the following fivefold differential cross section for the
A(ν, ν ′N ), A(ν, ν ′N ), A(ν, lN ), and A(ν, lN ) reactions

d5σ

dε′d2�ld2�f

= MlMNMA−1

(2π )5MAε′ k′2kf f −1
rec

∑
if

|Mf i |2, (4)

where �l and �f define the scattering direction of the outgoing
lepton and the outgoing nucleon. The recoil factor frec is given
by the following:

frec = EA−1

MA

∣∣∣∣∣1 + Ef

EA−1

[
1 − �q · �kf

k2
f

]∣∣∣∣∣ . (5)

The squared invariant matrix element Mf i can be written as
follows:

∑
if

|Mf i |2 = G2
F

2

[
M2

B

Q2 + M2
B

]2

lαβWαβ. (6)

Here, MB represents the mass of the Z boson for NC reactions
and that of the W boson for CC processes. GF is the Fermi
constant. For CC reactions the latter has to be multiplied with
a factor cos θc, with θc, the Cabbibo angle, determining the
mixing of the strong down and strange quarks into the weak
d quark. In the above expression the lepton tensor is defined
as

lαβ ≡
∑
s,s ′

[ulγα(1 − γ5)ul]
†[uνγβ(1 − γ5)uν], (7)

with s and s ′ the initial and final lepton spins. The hadron
tensor is given by

Wαβ =
∑
if

〈�αµJµ〉†〈�βνJν〉 =
∑
if

〈J α〉†〈J β〉, (8)

with the boson propagator

�µν = gµν − qµqν

M2
B

. (9)

The quantity 〈J α〉 in Eq. (8) can be written as

〈J α〉 ≡ 〈(A − 1)(JRMR),Kf (Ef , �kf )

ms |�αµĴ µ|A(0+, g.s.)〉, (10)

with Ĵ µ the weak current operator, |A(0+, g.s.)〉 the ground
state of the target even-even nucleus and |(A − 1)(JRMR)〉 the
state in which the residual nucleus is left. At the energies
considered here, Eq. (9) can approximately be written as
�µν ≈ gµν , and the quantity 〈J α〉 ≈ 〈J α〉, establishing the
connection between the four-vectorJ α and the nuclear current
operator. In the extreme relativistic limit, the contraction of the
lepton tensor lαβ with the nuclear one Wαβ in Eq. (6) can be
cast in the form [34]:

d5σ

dε′d2�ld2�f

= MNMA−1

(2π )3MA

kf f −1
rec σ

Z,W±
M [vLRL + vT RT

+ vT T RT T cos 2φ + vT LRT L cos φ

+h(v′
T R′

T + v′
T LR′

T L cos φ)], (11)

with σM defined by the following:

σZ
M =

[
GF cos(θl/2)ε′M2

Z√
2π (Q2 + M2

Z)

]2

, (12)

for NC reactions and

σW±
M =

√
1 − M2

l

ε′2

[
GF cos(θc)ε′M2

W

2π (Q2 + M2
W )

]2

, (13)

for CC reactions. In these equations, θl is the angle between the
direction of the incident and the scattered lepton’s momentum
and φ the azimuthal angle of the reaction plane (see Fig. 1). In
Eq. (11), h = −1 (h = +1) corresponds to the helicity of the
incident neutrino (antineutrino). For NC reactions, the lepton
kinematics is contained in the kinematic factors

vL = 1, (14)

vT = tan2 θl

2
+ Q2

2|�q|2 , (15)

vT T = − Q2

2|�q|2 , (16)

vT L = − 1√
2

√
tan2 θl

2
+ Q2

|�q|2 , (17)

v′
T = tan

θl

2

√
tan2 θl

2
+ Q2

|�q|2 , (18)

v′
T L = 1√

2
tan

θl

2
. (19)
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M. C. MARTÍNEZ et al. PHYSICAL REVIEW C 73, 024607 (2006)

The corresponding response functions read

RL =
∣∣∣∣〈J 0(�q)〉 − ω

|�q| 〈J
z(�q)〉

∣∣∣∣
2

, (20)

RT = |〈J +(�q)〉|2 + |〈J −(�q)〉|2, (21)

RT T cos 2φ = 2
{〈J +(�q)〉∗〈J −(�q)〉}, (22)

RT L cos φ = −2

{[

〈J 0(�q)〉 − ω

|�q| 〈J
0(�q)〉

]

× [〈J +(�q)〉 − 〈J −(�q)〉]∗
}

, (23)

R′
T = |〈J +(�q)〉|2 − |〈J −(�q)〉|2, (24)

R′
T L cos φ = −2


{[
〈J 0(�q)〉 − ω

|�q| 〈J
z(�q)〉

]

× [〈J +(�q)〉 + 〈J −(�q)〉]∗
}

, (25)

where 〈 �J (�q)〉 is expanded in terms of unit spherical vectors �em

�e0 = �ez, �e±1 = ∓ 1√
2

(�ex ± i�ey). (26)

For CC reactions, the mass of the outgoing lepton has to be
taken into account. This results in the following substitutions
(see also for instance Ref. [9])

vT = 1 −
√

1 − M2
l

ε′2 cos θl + εε′

|�q|2
(

1 − M2
l

ε′2

)
sin2 θl, (27)

vT T = − εε′

|�q|2
(

1 − M2
l

ε′2

)
sin2 θl, (28)

vT L = sin θl√
2|�q| (ε + ε′), (29)

v′
T = ε + ε′

|�q|


1 −

√
1 − M2

l

ε′2 cos θl


 − M2

l

ε′|�q| , (30)

v′
T L = − sin θl√

2

√
1 − M2

l

ε′2 . (31)

Furthermore

RT L cos φ = 2

{[

〈J 0(�q)〉 − ω + M2
l

|�q| 〈J z(�q)〉
]

× [〈J +(�q)〉 − 〈J −(�q)〉]∗
}

, (32)

and

vLRL = v0
LR0

L + vz
LRz

L + v0z
L R0z

L , (33)

with

R0
L = |〈J 0(�q)〉|2, Rz

L = |〈J z(�q)〉|2,
(34)

R0z
L = −2
{〈J 0(�q)〉〈J z(�q)〉∗},

and

v0
L =


1 +

√
1 − M2

l

ε′2 cos θl


 , (35)

vz
L =


1 +

√
1 − M2

l

ε′2 cos θl − 2εε′

|�q|2
(

1 − M2
l

ε′2

)
sin2 θl


, (36)

v0z
L =


 ω

|�q|


1 +

√
1 − M2

l

ε′2 cos θl


 + M2

l

ε′|�q|


 . (37)

The expressions for RT ,RT T , R′
T , and R′

T L remain unaltered.
So far, a precise knowledge of the kinematic variables at

the lepton vertex was assumed. In practice, this information
is not attainable in typical neutrino-scattering experiments.
Indeed, in NC reactions, the scattered lepton is chargeless and
remains undetected. In CC processes, however, detection of the
final lepton is possible and its energy and momentum could in
principle be measured. However, because of limited control
on the incoming neutrino energies, the energy-momentum
balance at the lepton vertex cannot be precisely determined.
To get the QE neutrino-nucleus cross section, we integrate
over the phase space of the scattered lepton (d2�l) and the
outgoing nucleon [d2�f (θf , φ)]. For the latter, integration
over the azimuthal angle φ yields a factor 2π , whereas only the
φ-independent terms survive because of symmetry properties.
This yields the following:

dσ

dε′ = MNMA−1

(2π )3MA

4π2
∫

sin θldθl

×
∫

sin θf dθf kf f −1
rec σM [vLRL + vT RT + hv′

T R′
T ].

(38)

In practice, we compute the response functions for all single-
particle levels in the target nucleus and obtain dσ/dε′ by
summing over all these.

B. Nuclear current

Obviously, the determination of the response functions
requires knowledge of the nuclear current matrix ele-
ments [Eq. (10)]. We describe the neutrino-nucleus nucleon-
knockout reaction within the impulse approximation, assum-
ing that the incident neutrino interacts with only one nucleon,
which is subsequently emitted. The nuclear current is written
as a sum of single-nucleon currents. The wave functions for
the target and the residual nuclei are described in terms of
an independent-particle model. Then, the transition matrix
elements can be cast in the following form:

〈Jµ〉 =
∫

d�r φF (�r)Ĵ µ(�r)ei �q.�rφB(�r), (39)

where φB and φF are relativistic bound-state and scattering
wave functions. Furthermore, Ĵ µ is the relativistic one-body
current operator modeling the coupling between the virtual Z0

or W± boson and a bound nucleon. The relativistic bound-state
wave functions are obtained within the Hartree approximation
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to the σ -ω model [33]. The quantum-field theoretical problem
is solved in the standard mean-field approximation replacing
the meson field operators by their expectation values. The
resulting eigenvalue equations of the relativistic mean-field
theory can be solved exactly. The corresponding bound-state
wave functions φB are four-spinors and can formally be written
as follows:

φB(�r) =
[

iGnB κB
(r)

r
YκBmB

(�r, �σ )
−FnB κB

(r)
r

Y−κBmB
(�r, �σ )

]
, (40)

with YκBmB
(�r, �σ ) the familiar spin spherical harmonics.

We use a relativistic one-body vertex function of the
following form:

Jµ = F1(Q2)γ µ + i
κ

2MN

F2(Q2)σµνqν

+GA(Q2)γ µγ5 + 1

2MN

GP (Q2)qµγ5, (41)

with κ the anomalous magnetic moment. The weak vector
form factors F1 and F2 can be related to the corresponding
electromagnetic ones for protons (FEM

i,p ) and neutrons (FEM
i,n )

by the conserved vector current (CVC) hypothesis. For proton
knockout they are given by

Fi =
{(

1
2 − 2 sin2 θW

)
FEM

i,p − 1
2FEM

i,n for NC reactions,(
FEM

i,p − FEM
i,n

)
for CC reactions,

(42)
with θW the Weinberg angle defined by sin2 θW = 0.2224. For
neutron knockout the weak vector form factors result from the
exchange of the subindexes p and n in Eq. (42). A standard
dipole parametrization is adopted for the vector form factors.

The axial form factor for proton knockout is expressed as

GA =
{

− gA

2 G for NC reactions,

gAG for CC reactions
(43)

where gA = 1.262 and G = (1 + Q2/M2)−2, with M =
1.032 GeV. For neutron knockout a minus sign must be added
to Eq. (43).

The Goldberger-Treiman relation allows one to write the
pseudoscalar form factor as

GP (Q2) = 2MN

Q2 + m2
π

GA(Q2), (44)

where mπ denotes the pion mass. The contribution of this form
factor, being proportional to the mass of the scattered lepton,
vanishes for NC reactions.

C. Final-state interactions in relativistic models

We now turn to the question of computing a relativistic
scattering wave function for the outgoing nucleon. Including
nucleon-nucleus FSI is a long-standing issue in theoretical
A(e, e′p) investigations. For kinetic energies up to around
1 GeV, most calculations have traditionally been performed
within a so-called distorted-wave impulse approximation
model (DWIA), where the final nucleon scattering state is
computed with the aid of proton-nucleus optical potentials.
For proton kinetic energies above 1 GeV parametrizations of

these potentials within the context of Dirac phenomenology
are not readily at hand. Furthermore, beyond this energy the
use of optical potentials for modeling FSI processes does not
seem very natural in view of the highly inelastic and diffrac-
tive properties of the underlying nucleon-nucleon scattering
process. In this energy regime, the Glauber model, which is
a multiple-scattering extension of the eikonal approximation,
offers a valid and economical alternative for describing FSI
[37]. In a Glauber framework, the FSI effects are computed
directly from the elementary nucleon-nucleon scattering data.
Below, we give a brief outline of the main features of both
models.

Within the RDWIA framework [24–27], φF in Eq. (39) is
a scattering solution to a Dirac-like equation, which includes
scalar and vector complex optical potentials obtained by fitting
elastic pA scattering data. The real part of these potentials de-
scribes the rescatterings of the ejected nucleon. The imaginary
part accounts for the absorption into unobserved channels. The
scattering wave function, expressed in terms of a partial-wave
expansion in configuration space, reads

φF (�r) = 4π

√
Ef + MN

2Ef

×
∑
κµm

e−iδ∗
κ i�

〈
�m

1

2
sf

∣∣∣∣jµ

〉
Ym∗

�

(
�kf

)
�µ

κ (�r), (45)

where �µ
κ (�r) are four-spinors of the same form as in Eq. (40).

The phase shifts δ∗
κ and radial functions are complex because

of the complex potentials. The outgoing nucleon spin is
denoted as sf . In this work we use the relativistic global
optical potential corresponding to the energy and target mass-
dependent parametrization (EDAD1) of Ref. [38].

The Glauber approach relies on the eikonal and the
frozen-spectators approximation. It allows formulation of a
full-fledged multiple-scattering theory for the emission of a
“fast” nucleon from a composite system consisting of A-1
temporarily “frozen” nucleons. Reference [32] provides a
detailed outline of a relativistic and unfactorized formulation
of Glauber multiple scattering theory. In this approach, coined
RMSGA, the scattering wave function in the matrix element
of Eq. (39) adopts the form

φF (�r) ≡ G(�b, z)φkf , sf
(�r), (46)

where φkf , sf
is a relativistic plane wave. The impact of the

FSI mechanisms on the scattering wave function is contained
in the scalar Dirac-Glauber phase G(�b, z)

G(�b, z) =
∏
α �=B

[
1 −

∫
d�r ′|φα(�r ′)|2θ (z′ − z)�(�b′ − �b)

]
, (47)

where the product over α(n, κ,m) extends over all occupied
single-particle states in the target nucleus, excluding the one
from which the nucleon is ejected. The profile function for NN
scattering is defined in the standard manner

�(�b) = σ tot
NN (1 − iεNN )

4πβ2
NN

exp

( −b2

2β2
NN

)
. (48)

The parameters σ tot
NN, βNN , and εNN depend on the ejectile

energy. Values for the parameters fitted to the pp and pn data
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can be found in Ref. [36]. The neutron-neutron scattering
parameters are assumed identical to the proton-proton ones.

As the integrations in Eq. (38) would require an enormous
numerical effort, we introduce an additional averaging over the
positions of the spectator nucleons. This procedure amounts
to replacing in Eq. (47) the characteristic spatial distributions
of each of the spectator nucleons by an average density
distribution for the target nucleus

G(�b,z) ≈
{

1 − σ tot
NN (1 − iεNN )

4πβ2
NN

×
∫ ∞

0
b′db′TB(b′, z) exp

[
− (b − b′)2

2β2
NN

]

×
∫ 2π

0
dφb′ exp

[−2bb′

β2
NN

sin2

(
φb − φb′

2

)]}A−1

. (49)

The function TB(b′, z), which was introduced in the above
expressions, is known as the thickness function and reads as
follows:

TB(b′, z) = 1

A

∫ +∞

−∞
dz′θ (z′ − z)ρB[r ′(b′, z′)], (50)

where the relativistic radial baryon density ρB(r) is defined in
the standard fashion

ρB(r) ≡ 〈�gs

A γ0�
gs

A 〉 =
∑

α

∫
d �σd�[φα(�r, �σ )]†[φα(�r, �σ )]

=
∑
nκ

(2j + 1)

4πr2

[
|Gnκ (r)|2 + |Fnκ (r)|2

]
, (51)

and the sum over nκ extends over all occupied states. For
exclusive A(e, e′, p) processes, where the quantum numbers
of the residual nucleus are well defined, the thickness-function
approximation of Eq. (49) provided results that approach the
exact ones obtained with the expression of Eq. (47) [32].
Here, we only deal with inclusive cross sections, obtained
after incoherently summing over nucleon emission from all
possible single-particle shells. Under these circumstances, one
can expect that the thickness-function approximation becomes
an even better one.

The RDWIA and RMSGA codes were developed indepen-
dently and adopt distinctive numerical techniques to compute
the scattering wave functions and the corresponding matrix
elements of Eq. (39). The RDWIA code employs a partial-wave
expansion to solve the Dirac equation for the ejectile. The
cylindrical symmetry of the Glauber phase of Eq. (47) prohibits
any meaningful use of this technique in the RMSGA calcu-
lations. Instead, the multidimensional integrals are computed
numerically. In the limit of vanishing FSI mechanisms, i.e.,
within RPWIA, though, both models should yield identical
results. In the Glauber picture this limit is reached by putting
the Glauber phase of Eq. (46) equal to unity. In the RDWIA
picture, the effect of FSI can be made vanishing by nullifying
the optical potentials. Then, the computed partial waves sum
to a relativistic plane wave. Convergence of the partial-wave
expansion was tested against the analytical plane-wave result.

The models described above were initially developed for
the description of exclusive A(e, e′p) processes, for which

an excellent agreement between theoretical calculations and
data has been achieved [24–28,30]. It is clear that inclusive
neutrino-scattering cross sections include contributions that
fall beyond the scope of the RDWIA and RMSGA models.
Both the RDWIA and RMSGA are confined to those processes
where the scattering of a neutrino from a nucleus causes a
single nucleon to escape, thereby exciting the residual nucleus
in a state at missing energies below 80 MeV and a predominant
single-hole nuclear structure with respect to the ground state
of the target nucleus. We refer to such processes as “elastic”
and stress that they include proton and neutron knockout from
the deepest lying 1s up to the Fermi level. Inelastic single-
nucleon knockout channels populating more complex states in
the residual A-1 nucleus are excluded from our calculations,
as are multinucleon knockout channels and channels involving
a pion. In that sense, the RDWIA and RMSGA predictions
for the inclusive neutrino-nucleus cross sections should be
interpreted as a lower limit of the single-nucleon knockout
contribution.

III. RESULTS

We present results for QE neutrino scattering from 12C and
56Fe, which are nuclei well suited for neutrino detection. The
calculations span incident neutrino energies from 150 MeV
to 5 GeV. From about 200 MeV to 1 GeV, the quasielastic
nucleon knockout is expected to be the dominant contribution
to the neutrino-nucleus cross section. At higher energies, the
relative contribution of the inelastic channels, mainly those
involving an intermediate delta resonance and pion production,
is expected to become increasingly dominant in the inclusive
process [39,40]. Reference [40] indicates that in the neutrino
energy range from 0.7 to 5 GeV reaction channels involving a
pion contribute 15% to the total cross section.

To make the comparisons between the RDWIA and
RMSGA calculations as meaningful as possible, all the
ingredients in the calculations not related to FSI, as those
concerning the implementation of relativistic dynamics and
nuclear recoil effects, are kept identical. In particular, both
pictures adopt the W1 parametrization [35] for the different
field strengths in determining the bound-state wave functions.
Accordingly, the RDWIA and RMSGA differ only in their
assumptions regarding the treatment of FSI.

It speaks for itself that before embarking on the study
of effects such as FSI, pion production, the role of the
delta in the medium, multinucleon knockout, the strangeness
content of the nucleon, and so on, it is absolutely essential
to possess reliable baseline RPWIA cross sections with a
numerical accuracy of a few percentages. To this purpose,
before turning to the study of the role of FSI mechanisms, we
first investigate the RPWIA limit of the RMSGA and RDWIA
models. These predictions will be compared and confronted
with other RPWIA results that were recently discussed in the
literature [15,17].

A. RPWIA

Figure 2 shows the results of various RPWIA calculations
for 12C(ν, ν ′) at 150, 500, and 1000 MeV. We observe that the
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FIG. 2. (Color online) Neutral current 12C(ν, ν ′) cross sections
as a function of the outgoing nucleon kinetic energy TN at different
incoming neutrino energies. The solid (dashed) lines represent the
RPWIA results of the Ghent (Madrid) group. The short-dot-dashed
lines show the RPWIA results of Ref. [17], and the long-dotted lines
those of Ref. [15]. The short-dotted (long-dot-dashed) line shows
the predictions of the RFG model of Ref. [14] (Ref. [8]) with a
binding-energy correction of 27 MeV.

plane-wave limits of our RMSGA and RDWIA formalisms are
in excellent agreement. The remaining differences, smaller
than 2–3%, can be attributed to the distinctive numerical
techniques. This comparison lends us confidence about the
consistency of the two types of calculations and the reliability
of the adopted numerical techniques.

The fact that our models provide almost identical RPWIA
results may seem trivial. As can be appreciated via Fig. 2,
however, our RPWIA predictions disagree with the ones of
Refs. [15] and [17]. Although the RPWIA calculations of
Refs. [15] and [17] are mutually consistent at ε = 500 MeV,
this is no longer the case at ε = 1 GeV. In the search for the
origin of the discrepancies between our and other RPWIA
calculations, differences in the nuclear current can be ruled
out. The current operator of Eq. (41) used along this work
is formally identical to the one mentioned in Refs. [15] and
[17], and the same holds for the form-factor parametrization.
Only the bound-state wave functions used in Refs. [15]
and [17] differ from ours. We have performed cross section
calculations with various parametrizations for the bound-state
wave functions and found almost negligible differences.

The role of the various terms F1, F2, and GA in Eq. (41) in
the NC differential cross section was investigated in Ref. [17].
The results were shown for proton knockout from the 1p3/2

orbital of 12C at incident neutrino energies of 150, 500, and
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FIG. 3. (Color online) Effect of the different form factors on the
neutral current 12C(ν, ν ′) cross sections as a function of TN at different
incoming neutrino energies. The solid lines represent the full RPWIA
results. The long-dot-dashed (short-dot-dashed) lines show the results
with F1 = 0 (GA = 0). The dashed lines show the cross section when
only GA is considered.

1000 MeV. In Fig. 3 we analyze the contribution of the
F1, F2, and GA form factors in our cross sections under the
same circumstances. First, let us observe that the calculations
performed by setting F1 = 0 (long-dot-dashed lines) almost
reproduce the full cross sections (solid lines). This shows, in
agreement with the outcomes of Ref. [17], that the contribution
of the Dirac form factor is very small. The cross section can
then be very well approximated as a sum of three terms:
one proportional to (GA)2, a second proportional to (F2)2,
and a third proportional to the interference of GA and F2

contributions. The term proportional to (GA)2 (dashed lines)
is very similar to the corresponding one in Fig. 11 of Ref. [17].
The same holds for the cross sections obtained by nullifying
GA (short-dot-dashed lines), whose behavior is almost entirely
given by F 2

2 term. Thus, the fact that our curves neglecting
the F1 contribution differ from those in Ref. [17] can mainly
be attributed to the GAF2 interference term. Furthermore, the
results seem to differ in the sign of this term. As a matter of fact,
changing the sign of the GAF2 term in our calculations, the
cross sections follow closely the ones of Ref. [17]. At 500 and
1000 MeV the differential cross sections of Ref. [17] display
some oscillations as a function of TN . As can be appreciated
from Figs. 2 and 3, we find no indications for these oscillations.
Recently, the authors of Ref. [17] have extended their work to
calculate CC neutrino cross sections [41]. We remark that for
these types of neutrino reactions the magnitude of the cross
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sections is in agreement with the RPWIA limit of the models
presented here.

It is well known that binding-energy effects tend to
vanish with increasing energies. Accordingly, a description
of the ν-nucleus scattering process in terms of a RFG model
is expected to approach the RPWIA predictions at high
incoming neutrino energies. This is observed in Fig. 2 when
comparing the RFG results of Refs. [8,12,14] with our RPWIA
predictions. At ε = 150 MeV, our RPWIA cross sections are
approximately 15% smaller than the RFG ones. The RFG
result from Refs. [12,14] closely follows our RPWIA results at
500 MeV, the agreement at 1 GeV being remarkably good. The
observed similarity between the independent RFG predictions
of Refs. [8,12,14] and our RPWIA results lends us additional
confidence that the RPWIA results presented here can serve
as benchmark calculations.

B. The effect of FSI: RMSGA and RDWIA approaches

Let us now turn our attention to the effect of FSI. NC
ν-nucleus cross sections obtained within RDWIA and
RMSGA are displayed in Fig. 4. The calculations correspond
to 12C and 56Fe targets, and incoming energies of 500, 1000,
and 5000 MeV. Focusing on the results of the RDWIA model,
the inclusion of the complex optical potential reduces the
RPWIA results by nearly 40–50% for 12C. As expected, the
global effect of FSI increases with growing atomic number, and
reductions of over 60% are obtained for 56Fe. The presence
of the imaginary term in the optical potential is likely to
lead to an underestimation of the single-nucleon knockout
contribution to the inclusive cross section. Indeed, in inclusive
measurements all possible final channels are included, whereas
the RDWIA and RMSGA calculations are confined to “elastic”
single-nucleon knockout.

Traditionally, Glauber-inspired models have been esteemed
to provide reliable results at high energies, as they rely on the
eikonal approximation. A very striking outcome of Fig. 4 is
that, for integrated quantities as the ones involved in neutrino

experiments, the RMSGA cross sections compare very well
with the RDWIA ones down to remarkably low ejectile
kinetic energies of about 200 MeV. Below this energy, the
RMSGA predictions are not realistic because of the underlying
approximations, mainly the postulation of linear trajectories
and frozen spectator nucleons.

For the sake of completeness, in Fig. 5 we show our
predictions for CC ν-nucleus cross sections. The effects of
FSI are of the same order as for NC, and very similar results
are also obtained within RMSGA and RDWIA down to very
low ejectile kinetic energies.

C. Estimating the effect of FSI mechanisms

A quantity routinely used to estimate the overall effect of
FSI in nucleon-emission processes is nuclear transparency.
Intuitively, it provides a measure for the probability that a
nucleon of a certain energy — above the particle-emission
threshold — can escape from the nucleus without being
subject to any further interaction. From this definition, one
can expect that nuclear transparency is identical for neutrino-
and electron-induced nucleon knockout. Once the nucleon is
traversing the nuclear medium, only its energy is expected to
determine the way it propagates. In addition, neutrinos and
electrons can be expected to probe equal amounts of bulk and
surface parts of the target nucleus.

Several investigations of the nuclear transparency have been
carried out using the A(e, e′p) reaction in the QE regime
(i.e., the Bjorken variable x = Q2/(2MNω) ≈ 1), and data for
different nuclei are now available. The nuclear transparency is
extracted from the ratio of the measured A(e, e′p) yield to the
calculated one using the plane-wave impulse approximation,
according to

Texp(Q2) =
∫
V

d3pmdEmYexp(Em, �pm, �kf )

c(A)
∫
V

d3pmdEmYPWIA(Em, �pm)
. (52)

The quantity V specifies the experimental phase space in
missing momentum (pm) and energy (Em). The kinematics
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FIG. 4. (Color online) Neutral current
12C(ν, ν ′) (left panels) and 56Fe(ν, ν ′) (right
panels) cross sections as a function of TN at
different incoming neutrino energies. The solid
lines represent the RPWIA predictions of the
Madrid group, in agreement with those of the
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FIG. 5. (Color online) Charged current
12C(νµ, µ−) (left panels) and 56Fe(νµ, µ−) (right
panels) cross sections as a function of the
outgoing lepton energy ε′ at different incoming
energies. The labeling is the same as in Fig. 4.

cuts |pm| � 300 MeV/c and Em � 80 MeV, in combination
with the requirement that x ≈ 1, guarantee that the electro-
induced proton-emission process is predominantly quasielas-
tic. The factor c(A) is introduced to correct in a phenomeno-
logical way for short-range mechanisms and is assumed to
be moderately target-mass dependent (c = 0.9 for 12C and
c = 0.82 for 56Fe). It accounts for the fact that short-range
correlations move a fraction of the single-particle strength
to higher missing energies and momenta and, hence, beyond
the ranges covered in the integrations of Eq. (52). Without
going into details, theoretical predictions are obtained in a
similar way from the ratio of distorted-wave calculations to
plane-wave ones. In Fig. 6, the transparencies predicted by
the RMSGA and the RDWIA models are displayed as a
function of Q2 for 12C and 56Fe, together with the world data
extracted from A(e, e′p). Solid (dot-dashed) lines show the
A(e, e′p) results within RMSGA (RDWIA). Details about the
calculations can be found in Ref. [29]. The dashed (RMSGA)
and dotted (RDWIA) curves correspond to the computed
A(ν, ν ′p) transparencies, obtained using the same procedure
as for electron scattering. This procedure includes the com-
putation of RDWIA and RPWIA cross sections at x ≈ 1,
averaged over the same phase space used in Eq. (52). As can
be seen, within each model the neutrino transparencies agree
quite well with their electron counterparts. This result clearly
illustrates the fact that in our models the average attenuation
effect of the nuclear medium on the emerging nucleon is
rather independent of the nature of the leptonic probe.

Adopting the idea that the nuclear transparency for elec-
trons equals the one for neutrinos, the information obtained
about nucleon propagation via A(e, e′p) can be used to predict
the effects of FSI mechanisms in inclusive QE ν-nucleus
cross sections. As the transparency is essentially the ratio
of cross sections including FSI to the ones in the plane-
wave limit, this will be done by multiplying the RPWIA
results for neutrino-nucleus cross sections with the measured
transparency factors extracted from A(e, e′p). In this scenario,

the benchmark RPWIA neutrino-nucleus cross sections are
crucial. It is important to realize that we use transparency
factors that are confined to x ≈ 1, whereas the computation
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FIG. 6. (Color online) Nuclear transparencies versus Q2 for
different nuclei in quasielastic kinematics. The solid (dot-dashed)
lines shows the results of a RMSGA (RDWIA) A(e, e′p) calculation
[29]. The dashed (dotted) lines represent the results for A(ν, ν ′p)
within RMSGA (RDWIA). Data points are from Refs. [44] (open
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FIG. 7. (Color online) Charged current
12C(νµ, µ−) (left panels) and 56Fe(νµ, µ−) (right
panels) cross sections as a function of ε′ at different
incoming energies. The dashed (dot-dashed) lines
represent the RMSGA (RDWIA) prediction.
The solid lines show the RPWIA results, scaled
with a transparency factor T (12C) ≈ 0.52 and
T (56Fe) ≈ 0.34.

of the inclusive neutrino-nucleus cross section include the full
phase space.

In Fig. 7, the dashed and dot-dashed lines represent the
inclusive CC ν-nucleus cross section within RMSGA and
RDWIA, respectively. The solid curve displays our corre-
sponding RPWIA calculation, scaled with a constant factor
taken as a representative value for the experimental A(e, e′p)
transparency for the nucleus. For 12C (56Fe) we take T ≈ 0.52
(≈ 0.34). In extracting these values, we have corrected the
measured transparencies from Fig. 6 with the factor c(A).
A very good agreement is observed between the rescaled
RPWIA and the full RDWIA/RMSGA curves in the case of
12C. This finding supports the idea that a simple scaling of
the RPWIA results with a transparency factor obtained from
electron scattering data allows one to reliably estimate the
FSI effects for the quasielastic contribution to the inclusive
neutrino cross section. The fact that for 56Fe the agreement
is less satisfactory reflects the fact that our models slightly
underestimate the 56Fe transparency data.

Finally, Fig. 8 displays the total cross section [σ =∫
dε′(dσ/dε′)] for 12C(νµ, µ−) and 56Fe(νµ, µ−) reactions,

scaled with the number of neutrons in the target. Results are
shown within RPWIA and RDWIA using a complex optical
potential. The figure clearly shows that the difference between
RPWIA and RDWIA cross sections is approximately given by
the experimental transparency factor extracted from A(e, e′p)
at QE kinematics. Furthermore, other important features can
be extracted from this figure. First, the RPWIA cross sections
scale with the target mass number. In this way, when RPWIA
cross sections are required for a heavy nucleus, a very good
approximation consists in multiplying this cross section per
nucleon by its mass number. Second, the cross sections do not
appreciably change from neutrino energies above 2 GeV, i.e.,
the cross sections saturate at high incoming neutrino energies.
To finish, we compare our relativistic calculations with data
from various experiments. The RPWIA calculations give a
fair account of the neutrino-energy and magnitude of the data.
The RPWIA is confined to single-nucleon knockout thereby

not including final-state interaction effects. The RDWIA cal-
culations, however, including FSI effects via the introduction
of an optical potential, considerably underestimate the data.
The results contained in Fig. 8 indicate that at least 50% of
the measured (νµ, µ−) strength can be attributed to single-step
(elastic) nucleon knockout to missing energies below 80 MeV
in the residual A-1 nucleus. The remaining fraction of
about 50% could be attributed to multinucleon knockout,
pion production with subsequent reabsorption, single-nucleon
knockout to more complex states, and so on. Adding all these
contributions would move the calculations closer to the data.

It has been suggested [33,42,43] that the importance of
these missing channels can be estimated in a model in
which both the single-particle bound states and scattering
states are computed in a real mean-field potential obtained
in the Hartree approximation to the σ -ω model. Such an
extreme mean-field model (here coined as RMF) involves
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no imaginary potential and accordingly the loss of single-
nucleon knockout strength into “inelastic” nucleon-knockout
channels is effectively reintroduced. As can be appreciated
from Fig. 8, the presence of a real potential reduces the
RPWIA single-nucleon knockout strength, but the global
reduction with respect to RPWIA is much smaller compared
to the 50–60% in the RDWIA/RMSGA frameworks. It is
remarkable that the energy dependence of the cross section
is identical in all three relativistic frameworks adopted here.
The magnitude, however, depends strongly on the model
used to account for FSI mechanisms. This reinforces our
suggestion that one could use RPWIA results to predict the
“elastic” single-nucleon knockout contribution to inclusive
neutrino cross sections, provided that they are rescaled
with a transparency factor extracted from A(e, e′p) data.

IV. CONCLUSIONS

We have employed two relativistic models, RMSGA and
RDWIA, to study NC and CC quasielastic neutrino-nucleus

scattering. Results have been presented for carbon and iron
targets, covering a wide range of neutrino energies. Within
RPWIA both models provide nearly identical results that
deviate from existing RPWIA predictions. The fact that two
independently developed codes that adopt very different
numerical techniques agree in this limit, together with the fact
that our RPWIA predictions approach the RFG model at high
energies, gives us confidence that our RPWIA calculations
serve as benchmark results. We subsequently computed the
effects of FSI mechanisms within the RMSGA and RDWIA
models. The two ways of dealing with FSI are consistent down
to remarkably low outgoing nucleon kinetic energies of about
200 MeV. FSI produce a large reduction of the cross sections
that increases with the mass number of the target nucleus.
Finally, we have illustrated that the nuclear transparencies
extracted from A(e, e′p) measurements can be used to estimate
the effect of FSI mechanisms on the elastic single-nucleon
knockout contribution to the inclusive neutrino-nucleus cross
sections. Extensions of our models include the implementation
of pion production and delta resonance. Work in this direction
is in progress.
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