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Paschos-Wolfenstein relation in a hadronic picture
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The Paschos-Wolfenstein (PW) relation joins neutral- and charged-current neutrino- and antineutrino-induced
cross sections into an expression that depends on the weak mixing angle sin2 θW . Contrary to the traditional
approach with partonic degrees of freedom, we adopt a model built on hadronic degrees of freedom to perform
a study of the PW relation at intermediate neutrino energies (100 MeV to 2 GeV). Running and upcoming
high-statistics scattering experiments such as MiniBooNE, MINERνA, FINeSSE and beta-beam experiments
make a scrutiny of the PW relation timely. Employing a relativistic Glauber nucleon knockout model for the
description of quasielastic neutrino-nucleus reactions, the influence of nuclear effects on the PW relation is
investigated. We discuss nuclear model dependences and show that the PW relation is a robust ratio, mitigating
the effect of final-state interactions, for example, to the 1% level. The role played by a possible strangeness
content of the nucleon is investigated. It appears that the uncertainties arising from the poorly known strangeness
parameters and the difficulties in nuclear modeling seriously limit the applicability of the PW relation as
an intermediate-energy electroweak precision tool. On the other hand, we show that nuclear effects may be
sufficiently well under control to allow the extraction of new information on the axial strangeness parameter.
Results are presented for 16O and 56Fe.
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I. INTRODUCTION

Now more than ever, neutrinos are valued for their wide
probing potential in many different domains. At intermediate
energies, they are put forward to study nucleon structure and
probe nuclear effects [1]. Well-defined ratios of neutrino-
scattering cross sections prove to be promising tools for mea-
suring the strange-quark contribution to the nucleon spin [2,3].
Lately, neutrinos have been regarded as interesting candidates
for electroweak tests aimed at a precision measurement of the
Weinberg angle θW [4–6].

As one of the most fundamental parameters in the standard
model (SM), the weak mixing angle has been at the center of
research activities, involving both theoretical SM calculations
[7,8] and experimental efforts to determine its value. While all
sin2 θW measurements near the Z0 pole [9,10] and for low Q2

values [11,12] are in good agreement with the SM prediction,
an experiment by the NuTeV Collaboration at Q2 = 20 GeV2

does not seem to corroborate the calculated running of the
Weinberg angle [4]. Explanations for this anomalous result
range from QCD uncertainties [13,14] to nuclear effects
[15,16] and even to interpretations involving new physics
[17,18]. Whether the surprising NuTeV outcome can be
resolved through a further analysis of the data or indeed hints
at new physics beyond the SM is still an unresolved issue [19].
In the NuTeV analysis, the Paschos-Wolfenstein relation [20]
plays an essential role in relating the weak mixing angle to
measured ratios of neutral-current (NC) to charged-current
(CC) deep-inelastic scattering (DIS) neutrino cross sections.
As a consequence, it has been tested very well in the DIS
regime with respect to genuine QCD mechanisms. However,
little effort has been made in the intermediate-energy regime,
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where an adequate description in terms of hadronic rather than
partonic degrees of freedom is needed.

In this work, we explore the physics that could be probed
by future measurements of the Paschos-Wolfenstein relation
at medium energies. With newly proposed, high-precision
neutrino-scattering experiments such as MINERνA [1],
MiniBooNE and FINeSSE [3], it is timely to make predictions
about the level of sensitivity needed to extract relevant physics
from these measurements. As a matter of fact, the MINERνA
proposal contains an extensive program for studying nuclear
effects with neutrinos [21]. More specifically, the impact of
the nuclear medium on NC/CC cross-section ratios will be
investigated by employing carbon, iron, and lead target nuclei.
In this paper, we focus on a study of the PW relation in the few
GeV regime, adopting a model based on hadronic degrees of
freedom [22]. Considering quasielastic (QE) neutrino-nucleus
scattering with nucleon knockout as the basic source of
strength in the 100 MeV to 2 GeV energy range, the PW
relation is constructed for both oxygen and iron target nuclei.
Treating nucleon-nucleon interactions in a relativistic mean-
field approximation, binding effects and the Pauli exclusion
principle are naturally included in our approach. Final-state
interactions of the outgoing nucleon are incorporated through
a Glauber approach. Within this model, we show how the
nuclear medium affects the PW relation. A model-dependence
discussion is included in this work, by comparing predictions
within different frameworks.

Knowing at what level nuclear uncertainties affect the PW
relation, one can proceed with putting theoretical constraints
on the accuracy with which variables can be determined from
it. In earlier work by Donnelly and Musolf [23], the estimated
nuclear uncertainties were too large to allow a sin2 θW

determination in parity-violating electron scattering (PVES)
with a precision similar to other types of measurements. It
is important to check if the PW relation at medium energies
provides a powerful tool for a Weinberg-angle extraction in the
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QE regime. In addition, the Paschos-Wolfenstein relation has
been suggested to serve as a lever for the determination of the
strange-quark contribution to the nucleon’s spin gs

A [24,25].
This and other work [26–28] point out that for sufficiently
high energies (∼1 GeV), the ratios of neutrino cross sections
can serve as theoretically clean probes for the nucleon’s
strangeness content. Here, we derive a theoretical error bar
for gs

A as extracted from the PW relation. Given that the PW
relation is both sensitive to the weak mixing angle and the
strangeness content of the nucleon, it is worthwhile to study
how these parameters are intertwined. This type of study is
surely relevant to the future FINeSSE experiment, which aims
at measuring the ratios of NC to CC neutrino-induced cross
sections at medium energies to extract information on the
strange axial form factor gs

A. The MiniBooNE Collaboration
too plans to consider neutrino/antineutrino asymmetries as a
means to extract new information on the strange form factors.

The paper is organized as follows. Section II introduces the
Paschos-Wolfenstein relation in its traditional DIS form. The
third section discusses the theoretical framework used in this
paper to describe neutrino-nucleus interactions. An analytical
estimate of the Paschos-Wolfenstein ratio for intermediate-
energy neutrino-nucleus scattering reactions is derived in
Sec. IV. Numerical results are presented in Sec. V. Our
conclusions are summarized in Sec. VI.

II. THE PASCHOS-WOLFENSTEIN RELATION

Traditionally, the Paschos-Wolfenstein relation is defined as
the following ratio of NC to CC (anti)neutrino-nucleon cross
sections

PW = σ NC(νN ) − σ NC(νN )

σ CC(νN ) − σ CC(νN )
. (1)

Adopting the nucleon’s quark-parton structure, the PW relation
can be computed starting from the quark currents

�̂(Z)
µ =

∑
q=u,d

gq,Lqγµ(1 − γ5)q + gq,Rqγµ(1 + γ5)q NC,

�̂(+)
µ = 1

2uγµ(1 − γ5)d, �̂(−)
µ = 1

2dγµ(1 − γ5)u CC, (2)

with the quark coupling strengths

gu,L = 1
2 − 2

3 sin2 θW , gu,R = − 2
3 sin2 θW ,

(3)
gd,L = − 1

2 + 1
3 sin2 θW , gd,R = 1

3 sin2 θW .

Using these expressions, one immediately derives [29]

PW =
(

1

cos2 θc

) (
1

2
− sin2 θW

)
, (4)

where θc stands for the Cabibbo mixing angle. Equation (4)
holds for isoscalar targets, containing an equal number of u

and d quarks, and neglecting s quarks.

III. CROSS SECTIONS FOR QUASIELASTIC
NEUTRINO-NUCLEUS INTERACTIONS

A description in terms of quark currents is no longer
appropriate when considering neutrino-nucleus interactions at
medium energies. Instead, one usually invokes form factors

to map the nucleon substructure. With these form factors,
matrix elements of the hadronic current are constructed based
on general principles of Lorentz invariance. In this section,
the formalism employed for the calculation of neutrino-
nucleus cross sections is presented. We consider quasielastic
(anti)neutrino-nucleus interactions of the type

ν + A
NC−→ ν + (A − 1) + N,

ν + A
NC−→ ν + (A − 1) + N,

(5)
ν + A

CC−→ l− + (A − 1) + p,

ν + A
CC−→ l+ + (A − 1) + n,

limiting ourselves to processes where the final nucleus (A − 1)
is left with an excitation energy not exceeding a few tens
of MeV. The target nucleus is denoted by its mass number
A, l represents an outgoing charged lepton, and N stands for
the ejectile (proton p or neutron n). To calculate the corre-
sponding cross sections, we turn to the relativistic quasielastic
nucleon knockout model described in Ref. [22]. Writing
K ′µ = (ε′, �k′),Kµ

N = (εN, �kN ), and K
µ

A−1 = (εA−1, �kA−1) for
the four-momenta of the scattered lepton, the ejectile, and the
residual nucleus, these cross sections are given by

d5σ

dε′d2�ld2�N

= MlMNMA−1

(2π )5ε′ k′2kNf −1
rec

∑
if

|Mf i |2. (6)

The exclusive cross section (6) still depends on the solid angles
�l and �N , determining the direction of the scattered lepton
and ejectile, respectively. The hadronic recoil factor frec is
given by

frec =
∣∣∣∣∣εA−1 + εN

(
1 − �q · �kN

k2
N

)∣∣∣∣∣ . (7)

Further on, an appropriate averaging over initial states and sum
over final states is performed in the squared invariant matrix
element |Mf i |2. Using the Feynman rules, one finds

|Mf i |2 = g4

64 M4
W

M4
Z,W

(
Q2 + M2

Z,W

)2
lαβWαβ, (8)

with g the weak coupling strength and Q2 = −qµqµ the
four-momentum transfer. For NC (CC) interactions, the boson
mass MZ(MW ) is selected. In the CC case, the right-hand side
of Eq. (8) should also be multiplied by cos2 θc. One further
distinguishes a lepton part described by the tensor lαβ and a
nuclear part described by the tensor

Wαβ = (J α)†J β. (9)

To evaluate the nuclear current matrix elementsJ µ, we assume
that the major fraction of the transferred energy is carried
by the ejectile, thereby neglecting processes that involve
several target nucleons. In the impulse approximation, the
nuclear many-body current operator is replaced by a sum of
one-body current operators Ĵ µ

A∑
k=1

Ĵ µ(�rk). (10)
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Employing an independent-particle model for the initial and
final nuclear wave functions, the current matrix elements can
be written as [22]

J µ =
∫

d�rφF (�r)Ĵ µ(�r)ei �q·�rφB(�r), (11)

where φB and φF are relativistic bound-state and scattering
wave functions. For the weak one-nucleon current operator,
we adopt the expression

Ĵ µ = F1(Q2)γ µ + i

2MN

F2(Q2)σµνqν

+GA(Q2)γ µγ5 + 1

2MN

GP (Q2)qµγ5 , (12)

which is composed of a vector part described by the Dirac and
Pauli form factors F1 and F2, and an axial part described
by the axial and pseudoscalar form factors GA and GP .
As pointed out, for example, in Ref. [22], one can choose
among different options for the one-body vertex function,
of which Eq. (12) is labeled cc2. For bound nucleons, these
parametrizations do not produce identical results, giving rise
to the so-called Gordon ambiguity. For the vector form
factors, two different parametrizations will be considered: a
standard dipole form and the Budd-Bodek-Arrington (BBA)
parametrization of Ref. [30]. The axial form factor GA will
be parametrized by a dipole. Using the Goldberger-Treiman
relation, the pseudoscalar form factor can be related to the
axial one such that

GP (Q2) = 2MN

Q2 + m2
π

GA(Q2), (13)

with mπ the pion mass. As the contribution of GP to the
cross section is proportional to the scattered lepton’s mass, it
vanishes for NC reactions. At Q2 = 0, the form-factor values
are given by

GA =
{−gAτ3+gs

A

2 NC,

gAτ± CC,
(14)

and

Fi =




(
1
2 − sin2 θW

)
F

EM,V
i τ3

− sin2 θWF
EM,S
i − 1

2F s
i NC,

F
EM,V
i τ± CC,

(15)

where the superscript s refers to strangeness contributions,
gA = 1.262, and the isospin operators are defined in the
standard way as

τ3|p〉 = +|p〉, τ3|n〉 = −|n〉,
τ+|n〉 = +|p〉, τ+|p〉 = 0, (16)

τ−|p〉 = −|n〉, τ−|n〉 = 0.

The relation between the weak vector form factors and the
electromagnetic isovector F

EM,V
i = F EM

i,p − F EM
i,n and isoscalar

F
EM,S
i = F EM

i,p + F EM
i,n ones is established by the conserved

vector-current (CVC) hypothesis.
Combining terms into longitudinal, transverse, and inter-

ference contributions, the cross section for NC interactions in

Eq. (6) can be written as

d5σ

dε′d2�ld2�N

= MNMA−1

(2π )3
kNf −1

rec σZ[vLRL + vT RT

+ vT T RT T cos 2φ + vT LRT L cos φ

± (v′
T R′

T + v′
T LR′

T L cos φ)], (17)

where the upper (lower) sign relates to antineutrino (neutrino)
cross sections. We use the notation

σZ =
(

GF cos(θl/2)ε′M2
Z√

2π
(
Q2 + M2

Z

)
)2

, (18)

and the definitions of Table I. The lepton scattering angle
is denoted by θl , whereas φ stands for the azimuthal angle
between the lepton scattering plane and the hadronic reaction
plane, defined by �kN and �q. Because of the nonvanishing mass
of the outgoing lepton, CC processes imply expressions that
are slightly more involved. The expressions for the kinematic
factors and response functions are listed in the lower part of
Table I. Furthermore, σZ has to be replaced by σW± where

σW± =
(

GF cos(θc)ε′M2
W

2π
(
Q2 + M2

W

)
)2

ζ, ζ =
√

1 − M2
l

ε′2 . (19)

Final-state interactions (FSI) of the ejectile with the residual
nucleus are taken into account by means of a relativistic
multiple-scattering Glauber approximation (RMSGA). In this
approach, the scattering wave function of the outgoing nucleon
takes on the form

φF (�r) = G(�b, z)φkN ,sN
(�r), (20)

where φkN ,sN
is a relativistic plane wave and G(�b, z) represents

the scalar Dirac-Glauber phase. As a multiple-scattering
extension of the eikonal approximation, the Glauber approach
describes the emission of a fast nucleon from a composite
system of A − 1 temporarily frozen nucleons. Details about
the RMSGA approach can be found in Ref. [31]. When
FSI are neglected, G(�b, z) is put equal to 1, which corre-
sponds to the relativistic plane-wave impulse approximation
(RPWIA).

IV. PASCHOS-WOLFENSTEIN RELATION IN
NEUTRINO-NUCLEUS SCATTERING

The cross sections in Eq. (17) constitute the ingredients for
our study of the PW relation with hadronic degrees of freedom:

PW = σ NC(νA) − σ NC(νA)

σ CC(νA) − σ CC(νA)
. (21)

A numerical calculation of the PW relation can now
be performed to investigate its behavior with respect to
Eq. (4) and show its sensitivity to various nuclear effects in
the intermediate-energy range. Before doing so, however, it is
interesting to investigate whether the sin2 θW dependence of
Eq. (4) can be retrieved within a hadronic picture. First, for
inclusive neutrino-scattering reactions, an integration over all
angles �l,�N is performed in Eq. (17), thereby nullifying all
φ-dependent terms. Moreover, ignoring the small differences
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TABLE I. Kinematic factors and response functions for NC and CC (anti)neutrino-nucleus scattering.
Hadronic matrix elements are expressed in the spherical basis �ez, �e±1 = ∓ 1√

2
(�ex ± i�ey),J µ = (J 0, �J ) with

�J = −J −1�e+1 − J +1�e−1 + J z�ez. For the CC case, we only list those expressions that differ from the NC ones.

Kinematic factors Response functions

Neutral current
vL = 1 RL = |J 0 − ω

q
J z|2

vT = tan2 θl

2 + Q2

2q2 RT = |J +1|2 + |J −1|2
vT T = − Q2

2q2 RT T cos 2φ = 2�[(J +1)†J −1]

vT L = − 1√
2

√
tan2 θl

2 + Q2

q2 RT L cos φ = −2�(J 0 − ω

q
J z)(J +1 − J −1)†

v′
T = tan θl

2

√
tan2 θl

2 + Q2

q2 R′
T = |J +1|2 − |J −1|2

v′
T L = 1√

2
tan θl

2 R′
T L cos φ = −2�(J 0 − ω

q
J z)(J +1 + J −1)†

Charged current

vLRL = (1 + ζ cos θl)|J 0|2 + (1 + ζ cos θl − 2εε′
q2 ζ 2 sin2 θl)|J z|2 − ( ω

q
(1 + ζ cos θl) + M2

l

ε′q )2�(J 0(J z)†)

vT = 1 − ζ cos θl + εε′
q2 ζ 2 sin2 θl

vT T = − εε′
q2 ζ 2 sin2 θl

vT LRT L cos φ = sin θl√
2q

(ε + ε ′){2�[(J 0 − ω

q
J z)(J +1 − J −1)† − M2

l

q
J z(J +1 − J −1)†]}

v′
T = ε+ε′

q
(1 − ζ cos θl) − M2

l

ε′q
v′

T L = − sin θl√
2

ζ

between proton and neutron wave functions when evaluating
the difference of ν- and ν-induced cross sections, we retain
only the contribution from the transverse R′

T response.
Obviously, for NC processes, this contribution has to be
considered separately for protons and neutrons, whereas in the

denominator, the charge-exchange feature of the interaction
forces neutrinos to interact with neutrons and antineutrinos
with protons. Expressing the differential cross sections in terms
of the outgoing nucleon’s kinetic energy TN , we obtain for an
isoscalar nucleus

dσ NC(νA)
dTN

− dσ NC(νA)
dTN

dσ CC(νA)
dTN

− dσ CC(νA)
dTN

≈
(

1

cos2 θc

) ∑
τ3=±1

∑
α

∫ π

0 sin θl sin2 θl

2 dθl

∫ π

0 sin θNdθNkNf −1
rec

dTN

dε′
ε′2M4

Z

(4εε′ sin2 θl
2 +M2

Z )2

ε+ε′
q

(R′
T )NC

∑
α

∫ π

0 sin θl sin2 θl

2 dθl

∫ π

0 sin θNdθNkNf −1
rec

dTN

dε′
ε′2M4

W

(4εε′ sin2 θl
2 +M2

W )2

ε+ε′
q

(R′
T )CC

, (22)

where the summation over α extends over all bound proton
single-particle levels in the target nucleus, and the mass of
the outgoing lepton has been neglected. Clearly, the main
difference between numerator and denominator lies in the
value of the remaining transverse response function R′

T ,
proportional to GA(Q2)GM (Q2), with GM = F1 + F2 the
magnetic Sachs form factor. Assuming that Q2 
 M2

Z,M2
W

and disregarding differences in the contributions of different
shells, the expressions in numerator and denominator cancel to
a large extent. In other words, the PW relation is approximately
given by

dσ NC(νA)
dTN

− dσ NC(νA)
dTN

dσ CC(νA)
dTN

− dσ CC(νA)
dTN

≈
(

1

cos2 θc

) ∑
τ3=±1 GNC

A (0)GNC
M (0)

GCC
A (0)GCC

M (0)

=
(

1

cos2 θc

)[(
1

2
− sin2 θW

)

+ gs
A

gA

(
sin2 θW (µp + µn) + 1

2µs

(µp − µn)

)]
. (23)

Apart from the standard value figuring in Eq. (4), an additional
strangeness term appears. In Eq. (23), µp = F EM

2,p (0) [µn =
F EM

2,n (0)] denotes the proton (neutron) magnetic moment and
µs = F s

2 (0) is the strangeness magnetic moment. We wish to
stress that the left-hand side of Eq. (23) is TN independent.

V. RESULTS AND DISCUSSION

In the previous section, the DIS expression of the PW
relation was regained by making various approximations to
our hadronic picture. Next, we will evaluate numerically to

065501-4



PASCHOS-WOLFENSTEIN RELATION IN A HADRONIC . . . PHYSICAL REVIEW C 74, 065501 (2006)

what extent the nuclear medium affects this standard value of
the PW relation. To this end, the previously neglected nuclear
effects are gradually included, and the resulting PW curves
are compared with the expression (23). First, the strangeness
content of the nucleon will be ignored, putting gs

A = 0 and
µs = 0. A discussion of the strangeness sensitivity of the PW
relation is postponed to Sec. V E. Results will be presented
for νe(νe) scattering off both an isoscalar nucleus, 16

8O, and
a heavier one, 56

26Fe, with neutron excess. As a starting point,
we use dipole vector and axial form factors, the cc2 form for
the one-nucleon current, and an on-shell weak mixing angle
sin2 θW = 0.2224.

A. Relativistic plane-wave impulse approximation

Ignoring FSI of the ejectile with the residual nucleus,
we adopt the relativistic plane-wave impulse approximation
(RPWIA). Figure 1 displays the PW relation against the
outgoing nucleon’s kinetic energy TN for an incoming neutrino
energy of 1 GeV and an 16

8O target nucleus. Clearly, the 1p1/2-
shell contribution to the PW relation cannot be distinguished
from the total, shell-summed expression. Both curves show
a remarkably constant behavior over a broad TN interval
and are in excellent agreement with the analytic value in
Eq. (23). At very small TN values, threshold effects induce
large deviations. The sudden increase near TN ≈ 550 MeV
relates to a decrease of the corresponding neutrino-induced
NC and CC cross sections at the same energy, as shown in
Fig. 2. For an incoming neutrino energy of 1 GeV, nuclear
binding effects do not seem to influence the PW relation con-
siderably. As can be appreciated from Fig. 1, Eq. (23) provides
a very good approximation under those circumstances. In Fig.
3, we studied the sensitivity to the adopted parametrization
for the electroweak form factors. Employing the updated
BBA-2003 parametrization [30] for the weak vector form
factors apparently yields no difference with respect to the usual
dipole form. Indeed, the fact that the results in Figs. 1 and 3 are

 (MeV)NT
0 100 200 300 400 500 600

P
W

0.29

0.292

0.294

0.296

0.298

0.3

   all shells

1/2
   1p

   Standard value

 = 1 GeVε
RPWIA

FIG. 1. RPWIA PW relation as a function of the outgoing
nucleon’s kinetic energy TN for an incoming neutrino energy of
1 GeV and an 16O target nucleus (all shells). Also shown are the
contribution of the 1p1/2 shell, and the standard analytic value derived
in Eq. (23), with sin2 θW = 0.2224 and cos θc = 0.974.

 (MeV)NT
0 100 200 300 400 500 600 700 800 900

)
-1

 M
eV

2
 c

m
-3

9
 (

10
N

dT
σ

d

0

0.05

0.1

0.15

0.2

0.25

0.3

)-,eν(

)+,eν(

’)ν,ν(

’)ν,ν(

 = 1 GeVε

FIG. 2. 16O differential cross sections for an incoming
(anti)neutrino energy of 1 GeV. Full (dash-dotted) line represents
the neutrino (antineutrino) CC cross section; dashed (dotted) line
depicts the neutrino (antineutrino) NC cross section.

relatively TN independent indicates that the Q2 dependence
is largely canceled out in the PW ratio. Accordingly, the
sensitivity to the adopted Q2 evolution of the form factors is
minor. An interesting byproduct of this feature is that the PW
relation does not depend on the axial form factor’s cutoff mass
MA, which constitutes a possible source of uncertainty in the
determination of gs

A from neutrino cross-section ratios [25,26].
Similarly, Fig. 3 shows that the use of a different prescription
for the weak one-nucleon current operator has only a small
influence on the PW relation.

Most neutrino experiments, however, do not possess the
discriminative power to measure the ejectile kinematics.
A comparison with experimental results is facilitated using
total cross sections, summed over all final states of the
outgoing nucleon. Hence, it is useful to evaluate the integrated

 (MeV)NT
0 100 200 300 400 500 600

P
W

0.29

0.292

0.294

0.296

0.298

0.3

   dipole, cc2

   BBA

   cc1

   cc3

   Standard value

 = 1 GeVε

FIG. 3. RPWIA PW relation as a function of TN for the 16O 1p1/2

shell and an incoming neutrino energy of 1 GeV. Shown are the
reference curve with dipole vector form factors and the cc2 prescrip-
tion for the one-nucleon vertex function, curves of results using the
BBA-2003 parametrization and the cc3 and cc1 prescriptions, and
the standard analytic value of Eq. (23).
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 (MeV)ε
0 500 1000 1500 2000

in
t

P
W

0.29

0.295

0.3

0.305

0.31

0.315

   RPWIA

   Standard value

FIG. 4. PW relation for total ν/ν −16 O cross sections against
incoming neutrino energy.

expression

PWint = σ NC(νA) − σ NC(νA)

σ CC(νA) − σ CC(νA)
, (24)

obtained by integrating dσ/dTN over TN . Figure 4 displays
PWint for ν/ν-16O cross sections and various incoming
neutrino energies ranging from 100 MeV to 2 GeV.

From ε = 500 MeV onward, the calculated values agree
with the standard value at the 0.5% level, illustrating once more
the validity of the approximation of Eq. (23) in the relativistic
plane-wave approximation. However, large discrepancies are
observed at lower incoming energies. There, binding effects
play an important role in the relative magnitude of the
individual shell contributions to the cross sections. As a result,
the expressions in numerator and denominator of Eq. (22) do
not cancel entirely, thereby shifting PWint to larger values. With
increasing incoming neutrino energies, differences between
the contributions of different shells become less important,
and the numerically computed PW values take on the value
for the free nucleon.

In several experiments, νµ and νµ beams are employed.
Consequently, the outgoing muon’s mass needs to be taken
into account when calculating the CC cross sections. For suffi-
ciently high muon-neutrino energies, however, it is readily seen
that the mass of the muon (≈105.7 MeV) hardly influences the
TN dependence of the CC cross sections. Indeed, the nuclear
responses should not be different, since a final nucleon state
of fixed kinetic energy must be created, irrespective of the
outgoing lepton’s nature. As for the kinematic factors (Table I),

to a very good approximation the expression ζ =
√

1 − M2
l

ε′2
equals 1 for electrons. For sufficiently high incoming energies,
ζ ≈ 1 also holds for muon neutrinos. Figure 5 indicates that
this reasoning is already valid for an incoming νµ energy of
1 GeV.

B. Final-state interactions

Unavoidably connected with the nucleon knockout channel
under consideration is the nuclear effect stemming from the
ejectile searching its way through the residual nucleus. Here,

 (MeV)nT
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FIG. 5. Antineutrino-induced CC differential cross sections for
16O as a function of the outgoing neutron’s kinetic energy Tn. The
full (dashed) line corresponds to an outgoing positron (antimuon).

these FSI are modeled by a relativistic multiple-scattering
Glauber approximation (RMSGA), introduced in Sec. III. In
this Glauber model, FSI roughly halve the cross sections for
16O. As the PW relation takes ratios of cross sections, FSI
effects cancel to a large extent, which is shown in Fig. 6 for
an incoming neutrino energy of 1 GeV. To better illustrate the
influence of FSI mechanisms, a ±1% error on the standard
PW value is indicated. In the region where the RMSGA
produces valid results, i.e., for TN down to 200 MeV [22], FSI
mechanisms increase the computed PW ratio by less than 1%.

C. Neutron excess

In the preceding sections, the PW relation was investigated
for a target with an equal number of protons and neutrons. For
sufficiently high energies, the balance between protons and
neutrons makes the sin2 θW dependence of the PW relation
the traditional one of Eq. (4). Evidently, neutrino-scattering
experiments often employ heavier target nuclei, with an
excess amount of neutrons. The additional energy-dependent
terms that are introduced in the PW formula will affect
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FIG. 6. PW relation as a function of TN for the 16O 1p1/2 shell,
for the RPWIA and RMSGA cases. Standard PW value lines show
errors of 1%.
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FIG. 7. RPWIA PW relation as a function of TN for an iron target
(dash-dotted). For reference, a dashed-line denotes the 10%-reduced
standard PW value.

the predicted PW standard value (23), which required the
perfect cancellation between proton and neutron contributions.
Figure 7 shows the TN dependence of the PW relation for 56Fe
at an incoming neutrino energy of 1 GeV. The specific energy
dependence of PW in the iron case is given shape by the extra
ν-induced CC cross sections in the denominator. Thereby, low
PW values correspond with the peak region, and high values
with the tail of the excess neutrons’ contribution to σ CC(νA). In
general, the neutron excess in the iron target lowers PW values
by >∼10%. Correspondingly, of all nuclear effects looked into
here, the neutron-excess correction to the PW relation is the
largest and most important one.

D. Model dependence and sin2 θW determination

Of course, to be relevant for future neutrino-scattering
experiments, the above predictions must be discussed in terms
of their model dependence. To this end, we follow the line
of reasoning taken in Refs. [24,26], where the difference
between cross sections provided by a relativistic Fermi-gas
model (RFG) and a relativistic shell model (RSM) is assumed
to be indicative of the theoretical model uncertainty itself.
While sizable for separate cross sections at lower incoming
neutrino energies, nuclear-model dependences already seem
to vanish at ε = 1 GeV where the RSM curves coincide
with the RFG ones [24]. A similar conclusion is reached
in Ref. [22], where a comparison is made between RPWIA
shell-model cross sections and RFG results. As the neutrino
energy increases to 1 GeV, the RFG curves approach more
and more the RPWIA predictions. In the same work, two
methods used to incorporate FSI mechanisms were compared:
the Glauber approach applied here and the relativistic optical
potential approximation. At ε = 1 GeV, both techniques
produced similar results down to remarkably low nucleon
kinetic energies TN ∼ 200 MeV. Hence, as nuclear-model
uncertainties seem to be negligible at ε = 1 GeV for separate
cross sections, we conclude that the PW relation, a super-ratio,
mitigates these model dependences well below the level of all
other nuclear effects studied in this work.

For isoscalar target nuclei and energetic neutrinos, the
whole of nuclear-model uncertainties on the PW relation
is seen to be well within percentage range. Evidently, this
means that a PW measurement with percent-level accuracy
can only resolve nonisoscalar nuclear effects. Notwithstanding
the extreme stability with respect to theoretical uncertainties
in nuclear modeling, a quick glance at the PW relation’s
Weinberg-angle sensitivity [from Eq. (4)]

�PW

PW
= −� sin2 θW

1
2 − sin2 θW

, (25)

immediately qualifies any ambition to exploit the PW relation
as an electroweak precision tool. From Eq. (25), a ±1%
theoretical uncertainty on the PW relation would result in
an equally large nuclear-model error on the Weinberg angle
�nuc(sin2 θW ) = ∓0.0028. On the contrary, a 10% measure-
ment error for the parity-violating asymmetry APV in �ee Møller
scattering at Q2 = 0.026 GeV2 translates in a 1% uncertainty
on the corresponding Weinberg-angle value [12]. The newly
proposed Qweak experiment at Jefferson Lab aims at a 4%
measurement of the proton’s weak charge Q

p
w, resulting in a

0.3% measurement of sin2 θW [32]. In this type of experiment,
the sensitivity to the weak mixing angle is substantially
enhanced by the factor 1/4 − sin2 θW figuring in the APV

expression. Obviously, the PW relation cannot compete with
the level of sensitivity achievable in this sector and is therefore
less suited as an electroweak precision test.

E. Strangeness

As a final point, we discuss the impact of the nucleon’s
strangeness content on the PW relation. State-of-the-art
reviews addressing the experimental progress on strange
electromagnetic form factors and the strangeness contribution
to nucleon spin can be found in Refs. [33] and [34],
respectively. Generally speaking, PVES experiments show a
tendency toward small, positive values for the strangeness
magnetic moment µs [33,35,36]. Leptonic DIS experiments
seem to suggest a value of ≈ − 0.1 for gs

A [34]. For baseline
strangeness parameter values, we therefore adopt predictions
from the chiral quark-soliton model (CQSM) with kaon
asymptotics [37], namely, µs = 0.115 and gs

A = −0.075. We
wish to stress that the available strangeness information still
exhibits relatively large error flags. Moreover, fundamental
discrepancies exist between the experimentally favored pos-
itive µs and most model predictions [33,38]. So, the values
used here can be regarded as model predictions for µs and gs

A

which are compatible with currently available data. Figure 8
illustrates the influence of nonzero strangeness parameters on
the PW relation. As can be observed from the left panel, the
inclusion of strangeness alters the PW relation for an isoscalar
target by an amount of ∼1%. For 56Fe, a nucleus with neutron
excess, the effect is larger (∼2%). Summing over an equal
number of proton and neutron contributions effectively cancels
all isovector-strangeness interference terms, thereby reducing
the PW relation to the analytic estimate (23). On the contrary,
the extra neutrons in 56Fe skew this proton-neutron balance,
producing a larger deviation from the PW relation without

065501-7



C. PRAET et al. PHYSICAL REVIEW C 74, 065501 (2006)

 (MeV)NT
0 100 200 300 400 500 600

P
W

0.288

0.29

0.292

0.294

0.296

0.298

0.3

 = 1 GeVε
1/2

O   1p16 

+1%

-1%

 (MeV)NT
0 100 200 300 400 500 600

P
W

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Fe56 

-10%

 = 0s

A
 = 0, g

s
µ 

 = -0.075s

A
 = 0.115, g

s
µ 

 Standard value

FIG. 8. RPWIA PW relation for the 16O 1 p1/2 shell (left) and an 56Fe (right) target nucleus with a 1 GeV incoming neutrino energy. For
comparison, standard PW values without strangeness are included.

strangeness. Clearly, strangeness adds a significant amount of
uncertainty when attempting to determine sin2 θW from the PW
relation. A simple way of visualizing the mutual influence of
the parameters entering into the PW relation is by considering
the correlation plots in Fig. 9. We took Eq. (23) with the
baseline parameter values as a starting point to calculate the
lines of constant PW. From the left panel of Fig. 9, one can
infer that a 50% uncertainty on gs

A translates in a 0.7% error
on sin2 θW if we assume that everything else is known. On the
other hand, extracting sin2 θW from the PW relation is visibly
less sensitive to the value of µs , yielding only a +0.3% increase
if µs is changed from 0.115 to 0. Again, it emerges that the
limited information on gs

A and µs presently at hand does not
allow one to exploit the PW relation to probe the Weinberg
angle with the sensitivity achievable in PVES.

Turning things around, however, a precisely known
Weinberg-angle value may be valuable in trying to pin down
gs

A from a measurement of the QE PW relation. Ratios of
neutrino-induced cross sections are indeed considered useful

for studying the strangeness content of the nucleon, and
notably the strangeness contribution to the nucleon spin gs

A.
Well-covered examples are the ratio of proton-to-neutron NC
reactions [24,26,39], NC to CC cross-section ratios [40,41],
polarization asymmetries [38], and the Paschos-Wolfenstein
relation for proton knockout PWp [24]. In the last article,
PWp was seen to have a strong dependence on gs

A. In addition,
results presented in this work justify the optimism about a
model-independent gs

A determination [25] by measuring PWp

in the right circumstances, i.e., with an isoscalar target nucleus
and an incoming neutrino energy of about 1 GeV. To study how
the finite precision on sin2 θW and µs influences the accuracy
with which gs

A can be extracted from PWp, we consider the
correlation plots in Fig. 10. The curves were again drawn
from Eq. (23), now retaining only the proton contribution in
the numerator (τ3 = +1) to obtain lines of constant PWp.
From this figure, we see that a 5% measurement of PWp

results in a ±0.067 determination of gs
A. For comparison,

the FINeSSE Collaboration aims at a 6% measurement of

s
A

g
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FIG. 9. Correlation of sin2 θW with strangeness parameter values in the PW relation. Solid line corresponds to values of the indicated
parameters for which the PW relation is constant. Other lines have the same meaning, but with PW equal to ±1% and ±5% of the full-line
value.
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A is intertwined with sin2 θW (left) and µs (right) through the PW

relation for proton knockout PWp . Line representations are the same as in Fig. 9.

the NC/CC ratio down to Q2 = 0.2 GeV2, corresponding to a
±0.04 measurement of gs

A. The left panel in Fig. 10 shows that
a 1% uncertainty on sin2 θW gives rise to a 20% uncertainty
on gs

A, assuming again that everything else is fixed. The
inconclusive information on µs available at present has a far
more severe effect on the value of gs

A, as can be derived from the
right panel. Shifting the strangeness magnetic moment from
0.115 to 0, gs

A changes by ∼0.07. We recall that nuclear-model
uncertainties can be mitigated to the 1% level, corresponding
to �nuc(gs

A) ∼ 0.015. This analysis stresses the importance of
further experimental efforts to put more stringent limits on the
strangeness form factors of the nucleon. As apparent from
this PWp case, experiments in the vector and axial-vector
sector heavily depend on each other in the sense that both
types of measurements need reliable input values for the other
strangeness parameters.

VI. CONCLUSIONS

Adopting a fully relativistic nucleon knockout model for
the description of quasielastic neutrino-nucleus interactions,
we have conducted a study of the Paschos-Wolfenstein relation
with hadronic degrees of freedom. Results are presented for
16O and 56Fe target nuclei and incoming neutrino energies
between 100 MeV and 2 GeV. We estimate that nuclear-model
uncertainties amount to a 1% theoretical error bar for the
PW relation in the case of sufficiently high neutrino energies

(>∼1 GeV) and isoscalar target nuclei. Under these conditions,
the Weinberg-angle dependence of the PW relation is to a
very good approximation identical to the one constructed
with DIS neutrino-nucleon cross sections. Binding effects
produce a sizable shift at lower incoming neutrino energies but
become negligible beyond 500 MeV. The largest correction
stems from neutron excess in the target, which drastically
lowers the PW curve. Though nuclear-model effects are
extremely well controlled, the PW relation is no match for
electroweak precision probes in other sectors, notably PVES
experiments, which have considerably greater sensitivity to
the Weinberg angle. The poor information on the nucleon’s
strangeness content presently at hand also induces 1%-level
uncertainties on the PW relation, and consequently puts even
more stringent limits on its sin2 θW sensitivity. An extraction
of the strangeness contribution to the nucleon spin gs

A through
the proton knockout part of the PW relation clearly benefits
from the small theoretical uncertainties involved [�nuc(gs

A) ∼
0.015], but it depends heavily on a reliable input for the strange
vector form factors.
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