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Abstract

By current theoretical understanding, spontaneous chiral symmetry breaking en-
hances the quark masses in the infrared, and thus generates most of the visible mass
in our universe, i. e. the mass of the nucleons, while simultaneously removing chiral
symmetry from the lowest states of the light hadron spectrum.

We first show that three-quark states naturally group into quartets (with two
states of each parity), split into two parity doublets, all splittings decreasing high
in the spectrum. We then present a first theoretical computation of the spectrum
of high-J excited baryons with a chiral invariant quark model.

We propose that a measurement of masses of high-partial wave ∆ resonances with
an accuracy of 50 MeV should be sufficient to unambiguously establish the approxi-
mate degeneracy, and learn how to probe the running quark mass in the mid-infrared
power-law regime, thanks to an ultrarelativistic expansion of the quark spinors. Such
precision, if challenging, can be reached thanks to experimental progress at ELSA,
Jefferson Lab and other facilities, and to the large effort of the lattice QCD com-
munity to compute the baryon spectrum.

Key words: Chiral symmetry restoration, parity doubling, baryon quartets,
running quark mass, QCD spectrum.
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1 Introduction

Quantum Chromodynamics (QCD) is a theory of the strong nuclear force
that has been thoroughly tested in high-energy physics, through hadron jets,
Drell-Yan processes, electron-positron annihilation, deep inelastic scattering
and several other experiments. Low-energy QCD manifests chiral symmetry
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breaking (χSB), that leads to several established hadron “low energy” theo-
rems. χSB also produces the enhancement of the quark masses in the infrared,
generating most of the visible mass in our universe. For the same token, chiral
symmetry is removed from the ground states of light hadron spectrum (so
low-lying hadrons do not appear in parity doublets).

However, so far, the middle and high range of the spectrum of light quark
hadrons, extending between about 1 GeV and 3 GeV , has not been accessible
to any known form of perturbation theory, effective or fundamental. Insensi-
tivity to chiral symmetry breaking, recently stressed by Glozman [1,2,3,4,5,6],
and restrospectively present in the excited hadronic spectra computed in chi-
ral invariant quark models [7,8] has led many hadron physicists to accept that
spontaneous chiral symmetry breaking, the salient feature of the low hadron
spectrum, actually is of lesser importance for excited resonances, to the ex-
tent that “high enough” in the spectrum, chiral symmetry is asymptotically
realized in the Wigner mode, by which hadrons must present themselves in
degenerate chiral multiplets [9]. We have realized that a formalization of this
statement is that the ratio of the mass to the momentum of the quark 〈m

k
〉

provides a new perturbative parameter to study some aspects of the middle
and high range of the hadron spectrum.

We also provide the theoretical background to understand parity doubling
in baryons. So far quark-based calculations implementing chiral symmetry
breaking have only been applied to meson (quark-antiquark) resonances. We
now show that three-quark states naturally group into quartets with two states
of each parity. Diagonalizing the chiral charge expressed in terms of quarks we
find that the quartet is split into two parity doublets, all splittings decreasing
towards the ultraviolet high in the spectrum.

Finally, we compute for the first time in a chiral invariant quark model, an
excited baryon spectrum. For reasons of simplicity and to minimize the im-
pact of molecular meson-nucleon configurations [10], we study the family of
maximum-spin excitations ∆∗ of the Delta baryon, the leading Regge tra-
jectory of the ∆ baryon spectrum. We estimate the experimental accuracy
needed to establish Chiral Symmetry Restoration in the high spectrum, to
help quantify what “high enough” in the spectrum means, and assist experi-
mental planning.

Experimentally, the ∆∗ excitations of the nucleon are copiously pion-, photo-
or electroproduced. The ∆++ are especially easy to track by their decay into
a proton p+ and a pion π+. In all, we advocate that a measurement of masses
of high-partial wave ∆ resonances with an accuracy of 50 MeV should be
sufficient to unambiguously establish the approximate degeneracy, and test
the concept of running quark mass in the infrared.
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2 Infrared Enhancement of the Quark Mass and the Utraviolet

Insenvitivity to Chiral Symmetry Breaking
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Fig. 1. Infrared enhacement of the light quark mass, generated when spontaneous
chiral symmetry breaking occurs. Shown are quark masses in the main approaches
to QCD, all multiplied by an arbitrary factor to match them at zero momentum.

The quark mass is supposed to run from some high, perturbative scale, where
m ≃ 1 − 5 MeV , to a constituent mass of circa 300 MeV, a whole two orders
of magnitude. Chiral perturbation theory and lattice QCD assist quark mass
extraction (above all, ratios between different flavors) [11], and both the lattice
and the Dyson-Schwinger approaches to QCD show its running towards the
infrared, but little has been said about this experimentally. In Fig. 1, we show
this crucial dynamical infrared enhacement of the quark mass, generated when
spontaneous χSB occurs. All masses are multiplied by an arbitrary factor to
match them at zero momentum. The constituent quark model, for simplicity,
considers a constant quark mass [12]. The oldest model of chiral symmetry
breaking, the (quark) Nambu and Jona-Lasinio model presents a step-function
infrared mass enhancement [13]. In the last two decades, this NJL model
has been extended to include confinement, resulting in the chirally invariant
quark model. With a linear confining potential, it is known that the transition
from the dynamically generated infrared mass to the ultraviolet mass follows
a power-law m → C

k4 , with C a constant [14]. Another power-law result,
although for Euclidean momentum, is found when the mass is generated with
simplified Schwinger-Dyson equations in the Landau gauge [15], and when
the mass is computed in lattice QCD in the Landau gauge as adapted from
Bowman et al. [16,17].
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The Dirac spinors Uκλ and V−κλ rule the quark-quark and quark-antiquark in-
teraction. Widely used is the heavy quark limit, both in quark model or lattice
NRQCD computations, where spin-tensor potentials are successfully derived
with the spinor expansion in orders of k/m(k). For light quarks the opposite,
ultrarelativistic (large-momentum) limit is relevant. Spinors are then conve-

niently expanded in the inverse ratio m(k)/k, or, with E(k) =
√

k2 +m(k)2,

Uκλ =
1

√

2E(k)







√

E(k) +m(k)χλ
√

E(k) −m(k)~σ · κ̂χλ





 −→
k→∞

1√
2







χλ

~σ · κ̂χλ





+
1

2
√

2

m(k)

k







χλ

−~σ · κ̂χλ





 (1)

having kept the leading chiral invariant term, and a next order chiral symmetry
breaking m(k)

k
term. Non-chiral, spin-dependent potentials in the quark-quark

interaction originate from the second term in the expansion eq. (1).

Our approach entails an expansion of HQCD in the weak sense, that is, not of
the Hamiltonian operator itself, but a restriction thereof to the Hilbert space
of highly excited resonances, where average quark momentum is large, or, in
obvious notation,

〈ψm|HQCD|ψn〉 ≃ 〈ψm|HQCD
χ |ψn〉 + 〈ψm|

m(k)

k
HQCD ′

χ |ψn〉 + . . . (2)

3 Baryon quartets

The approximate degeneracy into chiral quartets follows from invariance un-
der chiral transformations. These act on the classical quark fields as [18]
ψ → eiθ γ5ψ. Since the classical QCD Lagrangian contains no chiral-symmetry
breaking interactions of the form gAaµψ̄∂µψ, and only small current quark
mass terms m0ψ̄ψ, there is an (approximately) conserved chiral charge at the
classical level Qa

5 =
∫

dxψ†(x)γ5
τa

2
ψ(x) due to Noether’s theorem. Upon quan-

tizing, [Qa
5, H ] = 0. However Chiral Symmetry is spontaneously broken by the

ground state, Qa
5|0〉 6= 0 leading to the appearance of a large quark mass in the

quark propagator, m(k), to pseudo-Goldstone bosons (the pseudoscalar meson
octet of π, K, η), and to the loss of the chiral degeneracy in the groundstate
baryons.

Substituting the spinors, and translating the quark and antiquark operators
in terms of Bogoliubov-rotated quark and antiquark normal modes B, D [19],
the chiral charge takes the form
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Q5
a =

∫

d3k

(2π)3

∑

λλ′ff ′c

(

τa

2

)

ff ′

(3)





k
√

k2 +m2(k)
(σ ·k̂)λλ′

(

B†
kλfcBkλ′f ′c +D†

−kλ′f ′cD−kλfc

)

+

m(k)
√

k2 +m2(k)
(iσ2)λλ′

(

B†
kλfcD

†
−kλ′f ′c +Bkλ′f ′cD−kλfc

)



 .

In the presence of Spontaneous Chiral Symmetry Breaking, m(k) 6= 0, and
the two terms in the third line are responsible for the non-linear realization of
chiral symmetry in the spectrum as they create/destroy a pion.

But when the average momentum of any state on which this operator acts
is large, it is the second line that dominates, and chiral symmetry is realized
linearly (as it only displays quark counting operators with a parity-changing
spin flip).

We now examine the effect of a chiral transformation on a three-quark vari-
ational wavefunction |N〉 = FijkB

†
iB

†
jB

†
k|0〉. If a resonance is high enough in

the spectrum, the quarks have a momentum distribution peaked higher than
the infrared momenta where the mass is dynamically enhanced, and only the
second line of Eq.(3) is active. Q5|N〉 contains also three quarks, but one of
them is spin-rotated from Bkλ to σ · k̂λλ′Bkλ′. Successive application of the
chiral charge spin-rotates further quarks, changing each time the parity of the
total wavefunction. However the sequence of states is closed since σ·k̂σ·k̂ = I.
In fact, starting with an arbitrary wavefunction with parity P , one generates
a quartet, where in the following we drop the isospin index,

|NP
0 〉=

∑

F P
ijkB

†
iB

†
jB

†
k|Ω〉 (4)

|N−P
1 〉=

1

3

∑

F P
ijk

(

(

σ ·k̂B†
)

i
B†

jB
†
k +B†

i

(

σ ·k̂B†
)

j
B†

k +B†
iB

†
j

(

σ ·k̂B†
)

k

)

|Ω〉

|NP
2 〉=

1

3

∑

F P
ijk

(

(

σ ·k̂B†
)

i

(

σ ·k̂B†
)

j
B†

k +B†
i

(

σ ·k̂B†
)

j

(

σ ·k̂B†
)

k

+
(

σ ·k̂B†
)

i
B†

j

(

σ ·k̂B†
)

k

)

|Ω〉

|N−P
3 〉=

∑

F P
ijk

(

σ ·k̂B†
)

i

(

σ ·k̂B†
)

j

(

σ ·k̂B†
)

k
|Ω〉

that is the natural basis to discuss chiral symmetry restoration in baryons,
through wavefunctions that are linear combinations |N〉 =

∑

ca|Na〉.

Because the Hamiltonian and the chiral charge commute, they can be diag-
onalized simultaneously. The representation of the chiral charge in the (non-
orthonormal) quartet coordinates can be broken in two blocks sinceQ5 changes
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parity, if one uses the square charge

Q2
5







c0

c2





 =







3 2

6 7













c0

c2





 . (5)

Immediately one sees that the two linear combinations N0 −N2 and N0 +3N2

diagonalize the square chiral charge in the positive parity sector, with N1−N3

and 3N1 +N3 doing so in the negative parity.

The quartet then separates into two doublets connected by the chiral charge

Q5(N0 −N2) = N1 −N3 , Q5(N1 −N3) = N0 −N2 (6)

Q5(N0 + 3N2)= 3(3N1 +N3) , Q5(3N1 +N3) = 3(N0 + 3N2)

Since the quartet can be divided into two two-dimensional irreducible rep-
resentations of the chiral group (with different eigenvalues of Q2

5, 1 and 9
respectively), the masses of the two doublets may also be different, and the
interdoublet splitting becomes a dynamical question (we will argue shortly
that it is small for highly excited baryons). However, the splitting within the
doublet must vanish asymptotically. Even for fixed (not running) quark mass,
when the typical momenta are high enough 〈k〉 >> m in the kinetic energy,
the effects of the quark mass are negligible. Parity doubling then comes down
to whether the interaction terms are also chiral symmetry violating or not.

Finally let us remark that, while they are a suboptimal variational basis for
low-lying states, the quartet states coincide with the H-eigenstates high in the
spectrum. We use both the quartet basis and the fixed L variational basis in
our calculations to illustrate the physical principles.

4 Experimental access to the infrared quark mass running

We now exploit the smallness of the |M+ −M−| mass difference with increas-
ing angular momentum to guide experiment in obtaining information about
the running quark mass. For this we will establish how the j-scaling of this
quantity is related to the k-scaling of the running quark mass.
The M± in our proposed study are the masses of the ground state quartets
of the baryon spectrum, with parity ± and in the limit of large total angu-
lar momentum j (large when compared with s = 3/2). Naturally, the two
approximately degenerate masses M+ and M− are both part of the same
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Fig. 2. Typical momentum distributions of increasingly excited ∆3/2, ∆5/2 , ∆7/2,
∆9/2, ∆11/2, ∆13/2 resonances overlap less and less with the dynamically generated
infrared quark mass. (Illustrative variational wavefunctions for a linear potential
with string tension σ = 0.135 GeV 2, not normalized for visibility).

leading linear Regge trajectory, phenomenologically fixing their j-scaling

j = α0 + αM±2 −→
j→∞

αM±2
. (7)

The parity of the ground state alternates between + an − as the angular
momentum steps up by one. Large j is equivalent to large quark orbital an-
gular momentum l since the spin is finite, and also to a large average linear
momentum 〈k〉. This is illustrated in Fig 2 where we show how the overlap
with the running quark mass stops perceiving χSB for high-lying states. The
relativistic version of the virial theorem [20] states that the kinetic energy is
a fixed part of the total energy and thus

〈k〉 → c2M
± → c2√

α

√

j (8)

(where c2 is a constant, for instance for a linear potential, a relativistic kinetic
energy, and 3 quarks in a baryon, c2 = 1/6).

The first term in Eq. (2) cancels out in the difference |M+ −M−| << M±

(while each of the masses M± is dominated by the chiral invariant term,
the mass difference stems from the dynamically generated quark mass) thus

exposing the second term in eq.(2), proportional to 〈m(k)
k

〉, viz.

|M+ −M−|→ 〈m(k)

k
HQCD ′

χ 〉 → c3
m(〈k〉)
〈k〉 〈HQCD ′

χ 〉 (9)
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(the factorization is allowed by the mean value theorem at the price of an
unknown constant that we do not attempt to determine here). This equation
is analogous to the renowned Gell-Mann-Oakes-Renner relation

M2
π = −mq

〈ψ̄ψ〉
f 2

π

(10)

but active when chiral symmetry is realized linearly, as in the high-baryon
excitations we examine.

HQCD ′

χ contains the products of the σ · k̂ present in the spinors and thus
includes spin-spin, spin-orbit and tensor potentials together with spin inde-
pendent terms. To obtain its j-scaling we need to examine matrix elements
in the limit of large j, equivalent to large 〈k〉 or large M±. We separately
consider its angular and radial dependences 〈HQCD ′

χ 〉 α 〈HQCD ′

χ 〉angular ×
〈HQCD ′

χ 〉radial. The angular matrix element generally includes a spin-orbit
term, that leads its j-counting

〈HQCD ′

χ 〉angular → j . (11)

For the radial part we have to notice that in the large momentum limit there
is only one scale in the hamiltonian, ΛQCD or equivalently the string tension
σ. Thus the highest j-power is provided by the centrifugal barrier, dominating
the radial eigenvalue equation

l(l + 1)〈HQCD ′

χ 〉radial → j2〈HQCD ′

χ 〉radial → c4M
± (12)

and thus 〈HQCD ′

χ 〉radial ∝ j−2M±. Combining with eq. (11) we get 1

〈HQCD ′

χ 〉 → c5M
±j−1 → c5√

α

√

1

j
. (13)

The result of the j-scaling analysis reads then

|M+ −M−|→ c3m(〈k〉)
〈k〉 × c5M

± × j−1 =
c3c5
c2

m(〈k〉) j−1 . (14)

This equation links the infrared enhancement of the quark mass to baryon
spectroscopy in a usable way. An experimental extraction proceeds by just
fitting the exponent of the j-scaling for the splitting |M+ −M−| ∝ j−i. Then,
in view of eq. (8), one obtains either of

1 As a corollary, note that a spin-independent potential scales like 1
j3/2

.
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m(Λ ×
√

j) ∝ j−i+1 (15)

m(k) ∝ k−2i+2 . (16)

The same exponent i that appears in this last equation can be obtained from
the fit to the |M+ −M−| with increasing j! 2

5 Example model calculation of the quartet splittings

Our next contribution is to present for the first time a competitive chirally-
invariant quark model computation of the parity doubling in the excited
baryon spectrum, shown in figure 3. The model we employ is inspired in
Coulomb-gauge QCD (essentially dropping the Faddeev-Popov operator and
replacing the Coulomb kernel by its vacuum expectation value known to grow
linearly with distance) and can be seen as a field theory upgrade of the Cornell
potential model.

The Hamiltonian reads

H =−gs

∫

dxΨ†(x)α·A(x)Ψ(x) + Tr
∫

dx(E·E + B·B)

+
∫

dxΨ†
q(x)(−iα·∇ + βm0)Ψq(x) − 1

2

∫

dxdyρa(x)VL(|x − y|)ρa(y)

with a strong kernel containing a linear potential VL, with string tension σ =
0.135 GeV 2, coupled to the color charge density ρa(x) = Ψ†(x)T aΨ(x) +
fabcAb(x) · Πc(x) . We solve the BCS gap equation to spontaneously break
chiral symmetry and employ both the so calculated m(k) quark mass as well
as a lattice computation in Landau gauge [17] and in Coulomb gauge known
to us[21]. The model has the same chiral structure of QCD[7], satisfying the
Gell-Mann-Oakes-Renner relation, the low-energy theorems for pion scattering
[22] and allowing computations of static pion-nucleon observables [23]. For this
baryon sector application we employ the linear confining potential, and neglect
all magnetic interactions. This makes the ∆-nucleon mass splitting too small,
but does not affect the ∆∗ spectrum much.

The model statement equivalent to the generic eq. (9) reads

2 If, for instance as with a linear potential, the quark mass decreases with momen-
tum with a quartic power-law potential, then the splitting |M+ − M−| scales like
1
j3 . If, on the contrary, the quark mass is constant, and still the potential remains

chiral invariant, then the decrease follows a slower power law j−1.
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Fig. 3. Parity doubling in the spin-excited ∆ spectrum. A three-quark variational
Montecarlo computation of the resonance masses in a chiral Hamiltonian inspired
in Coulomb-gauge QCD, and that naturally extends the Cornell potential model
to a field theory, shows that the ground-states with parity + and − for each
j = 3/2 . . . 13/2 quickly degenerate. The experimental situation is still unclear,
the degeneracy can be claimed for the 9/2 states alone, and the chiral partners
higher in the spectrum are not experimentally known.

M+ −M− = 3
∫

d3k1

(2π)3

d3k2

(2π)3

(

2

3

) ∫

d3q

(2π)3
V̂ (q)

1

2

(

m(|k1|)
|k1|

+
m(|k1 + q|)
|k1 + q|

)

(17)

×
[

F ∗λ1λ2λ3(k1,k2)
(

I − σk̂1σk̂1 + q
)

λ1µ1

F µ1λ2λ3(k1 + q,k2 − q)
]

while the weaker degeneracy within the quartet is due to a spin-independent
potential, two j-powers lower than the leading centrifugal barrier. 3

We truncate the Fock space variationally, as customary, to the |qqq〉 mini-
mum wavefunction. Since radial excitations of this system compete with mul-
tiquark excitations, we concentrate instead on maximum angular-momentum
excitations. One hopes to reduce the molecular component[10] by studying the

3 The same chirally-invariant quark model was recently applied by Glozman and
Wagenbrunn [4] to study insensitivity to spontaneous χSB in the meson spectrum.
We can retrospectively understand their numerical results, with similar chiral quar-
tets and j-scaling of the splittings. Indeed their splitting inside the parity doublets
tends to zero like 1

j3 approximately. A second and weaker degeneracy seems to occur

within two of their doublets and this interdoublet splitting tends to zero like 1
j3/2

,

as expected in our corollary for spin-independent potentials.
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Fig. 4. All model quartet splittings vanish high in the spectrum. Left: splitting
inside the first parity doublet. Right: interdoublet splittings between natural and
unnatural parity states. The last, higher in the spectrum, is smaller from the start.

ground state in each J-channel, so that the |qqq〉 correlation remains impor-
tant high in the spectrum.

We proceed variationally and employ several types of wavefunctions, rational
and Gaussian, but the lowest energy (binding the model’s j-ground state from
above by the Rayleigh-Ritz principle) is obtained by employing the chiral-limit
pion-wavefunction rescaled with two variational parameters in terms of the two
Jacobi coordinates, sinφ(kρ/αρ) sinφ(kλ/αλ)Y

l
l (k̂ρ)χs1s2s3

, upon which we act
the antisymmetrizer of the quark wavefunction, mixing the ρ and λ variables.

As can be seen from figure 4, the model quartet splittings drop with the orbital
angular momentum j as predicted with the scalings we derived analytically
within our variational Montecarlo error.

6 Phenomenological consequences

To conclude this work, let us look ahead to what the highly excited spin spec-
trum may reveal. If precise data becomes available at ELSA or Jefferson Lab
for the ∆J with J = 7/2, 9/2, 11/2, 13/2 · · · parity quartets, one should be
able to distinguish between the 1/

√
j fall of |M+ −M−| for non-chiral mod-

els with a constant difference (M+ −M−)2 between the Regge Trajectories
[12], and the faster drops for chiral theories such as QCD. This should further
motivate analysis of empirical data[24] such as EBAC (Excited Baryon Anal-
ysis Center) at Jefferson Lab. In the same way, this should further motivate
the different Lattice QCD collaborations who are developing the necessary
techniques to compute the baryon spectrum on the lattice.
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Since the two doublets are closely degenerate, both positive and negative par-
ity ground states will have a nearby resonance with identical quantum num-
bers. Given the width of those states, it is likely they will only be distinguished
by very careful exclusive decay analysis.

If the excited ∆ spectrum could be measured high enough to go beyond the
infrared quark mass enhancement, and a lattice calculation of 〈HQCD ′

χ 〉 be-
came available, an almost direct measurement of the current quark mass
follows. In the ultraviolet, the quark mass runs with a slower logarithm,
m̄(Q2) = m̂

(1

2
log Q2/Λ2)

dm [25,26] instead of a power-law. The splittings, small

by then, do decrease slower.

We are indebted to Leonid Glozman for useful conversations. Work supported
by grants MCYT FPA 2008-00592/FPA, FIS2008-01323, and Accion Integrada
Spain-Portugal HP2006-0018. TVC acknowledges the support of the Fund for
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