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Quark–hadron duality in lepton scattering off nuclei
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Department of Subatomic and Radiation Physics, Ghent University, Belgium

A phenomenological study of quark–hadron duality in electron and neutrino scattering on nuclei

is performed. We compute the structure functions F2 and xF3 in the resonance region within a

framework that includes the Dortmund-group model for the production of the first four lowest-lying

baryonic resonances and a relativistic mean-field model for nuclei. We consider four-momentum

transfers between 0.2 and 2.5 GeV2. The results indicate that nuclear effects play a different

role in the resonance and DIS region. We find that global but not local duality works well. In

the studied range of four-momentum transfers, the integrated strength of the computed nuclear

structure functions in the resonance region, is considerably lower than the DIS one.

I. INTRODUCTION

Nearly forty years ago, Bloom and Gilman found [1] that in electron scattering on protons the inclusive structure

function F2 in the resonance region oscillates around the DIS scaling curve and, after averaging, closely resembles

it. This phenomenon is one of the ways quark–hadron duality reveals itself in physical processes. Generally quark–

hadron duality establishes a relationship between the quark–gluon description of a certain phenomenon, which is

theoretically justified in the DIS region, and the hadronic description, which is more convenient at medium and

low energies. Understanding duality is also essential when establishing relationships between exclusive and inclusive

processes. For a recent and detailed review of duality we refer the reader to Ref. [2].

So far, most theoretical studies of quark–hadron duality in lepton scattering were dealing with nucleon targets. The

topic becomes of great practical interest when turning to nuclear targets and neutrino sources. The current precision

measurements of the oscillation parameters require an efficient and accurate description of the neutrino–nucleus cross

sections. Of particular interest is the resonance region and the possibility of linking it with the DIS region. A hadronic

description of the neutrino-nucleus cross sections at low Q2 requires the vector and axial transition form factors for

each resonance. For the majority of the resonances, these transition form factors are not well constrained. Provided

that one can establish that quark-hadron duality holds with a reasonable accuracy, one could think of using the DIS

results for estimating the neutrino-nucleus cross sections in the resonance region. In that respect it is worth mentioning

that in nuclei, the Fermi motion of the nucleons smears the observables, so that the averaging in the resonance region

required for duality, proceeds to a certain extent automatically. The issue whether quark–hadron duality holds

with sufficient accuracy in lepton-nucleus scattering, requires further theoretical and experimental investigation. The

present paper addresses this issue from the theoretical point of view.
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Recent electron scattering measurements at Jefferson Laboratory (JLab) have confirmed the validity of Bloom–

Gilman duality for the proton, deuterium [3] and iron [4] structure functions. Further experimental efforts are required

for neutrino scattering. Among the upcoming neutrino experiments, Minerνa[5, 6, 7] and SciBooNE[8, 9, 10] aim at

measurements with carbon, iron and lead nuclei as targets. From the theoretical side, recent investigations of the

phenomenon of duality for electron and neutrino scattering on nucleons include the works reported in Refs. [11, 12, 13].

These studies differ in the way they treat the resonant contributions and the way they parameterize the DIS structure

functions. This paper extends the study of Ref. [13] about the duality phenomenon in the nucleon to nuclei.

For a free nucleon target, the structure functions generally depend on the transferred energy ν = E − E′ and

four-momentum Q2 = −qµqµ. At low Q2 the ν–distributions reveal several peaks, which correspond to various baryon

resonances. We briefly sketch our theoretical approach to resonance production in nuclei in Section II A. The nuclear

structure functions are defined in Section II B. At high Q2 the structure functions exhibit scaling behavior, which

is discussed in Section II C. Comparing the structure functions in these two regions allows one to check the basic

features of duality and compare its validity for different targets and incoming leptons. Our results are presented in

Section III for electrons and Section IV for neutrinos. Conclusions are given in Section V.

II. FORMALISM

We consider inclusive charged-current (CC) neutrino scattering from nuclei and its electromagnetic counterpart

νl(k
µ) + A → l−(k′µ) + X , l−(kµ) + A → l−(k′µ) + X , (1)

where l is the lepton flavor, A represents a nucleus with mass number A, and kµ = (E,~k) and k′µ = (E′, ~k′) are the

four–momenta of the incoming and outgoing lepton respectively. We work in the laboratory frame of reference. The

coordinate system is chosen such that the z-axis lies along the direction of the virtual photon, so that the transferred

momentum is given by qµ = kµ − k′µ = (ν, 0, 0, qz). The lepton scattering proceeds in the xz–plane. In this section,

we investigate the structure functions F2, 2xF1 and xF3, the latter being nonzero for neutrino reactions only. To this

end, CP-violation effects are neglected for the case of electron scattering.

A. Resonance production on a nucleus

For lepton–nucleus scattering we describe the struck nucleus as a collection of bound nucleons. Assuming an

independent–particle shell model, each nucleon occupies a nuclear shell α with a characteristic binding energy eα

and is described by the bound–state spinor uα. In the impulse approximation, an impinging lepton interacts with a

single bound nucleon. Hence, the nuclear cross section can be expressed as an incoherent sum over all nucleons of

one–nucleon cross sections weighted with the corresponding nucleon momentum distributions nα. For example, for a

carbon nucleus, one has

dσ
12

6
C

dQ2dν
=

∫

d3p

[

2
dσνp |1s1/2

dQ2dν
n

(p)

1s1/2
(|~p|) + 4

dσνp

∣

∣

1p3/2

dQ2dν
n

(p)

1p3/2
(|~p|)

+2
dσνn |1s1/2

dQ2dν
n

(n)

1s1/2
(|~p|) + 4

dσνn

∣

∣

1p3/2

dQ2dν
n

(n)

1p3/2
(|~p|)

]

.
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TABLE I: Binding energies (MeV) for carbon and iron nuclei

proton neutron

12C :

1s1/2 47.76 51.17

1p3/2 16.76 19.87

56Fe :

1s1/2 57.19 63.66

1p3/2 43.11 50.12

1p1/2 39.32 46.00

1d5/2 27.64 34.84

2s1/2 17.77 24.41

1d3/2 16.55 23.01

1f7/2 12.11 19.17

2p3/2 − 5.99

This allows us to employ the one–body lepton-nucleon vertex that can be well constrained in experiments with a

proton and deuteron target. The four–momentum of the bound nucleon can be written as pµ = (mN − eα, ~p). Both

the bound–state spinor uα(~p) and the corresponding binding energies are computed in the Hartree approximation

to the σ − ω Walecka–Serot model [14, 15]. Binding energies for carbon and iron are summarized in Table I. For

each shell, the nucleon momentum distribution nα(|~p|) is constructed from the bound–state spinors, the normalization

convention being
∫

d3p nα(|~p|) = 1 .

These nα(|~p|) are shown in Fig. 1, for the case of a carbon nucleus. Clearly, for a specific shell, the proton and neutron

distributions are almost identical.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

n(
p)

, G
eV

-3

p, GeV

1s(p)
1/2

1p(p)
3/2

1s(n)
1/2

1p(n)
3/2

FIG. 1: Momentum distributions for proton and neutron shells in carbon.

After the interaction takes place inside the nucleus, the reaction products can escape the nucleus without interactions
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or they can undergo elastic and/or inelastic rescatterings with the other nucleons. Thus, the reaction strength is

redistributed between different channels. All these processes are called the final state interactions (FSI). The effect

of FSI can be large for a specific exclusive process, for example for quasi-elastic nucleon knockout [16], where the

cross section can be suppressed by a factor of 2. In one–pion production, the outgoing pion can be absorbed in the

nucleus and thus mimic a quasi–elastic event. For a duality study, however, it suffices to consider inclusive reactions.

Consequently, since the outgoing hadrons and the residual nucleus are not detected, we can make the assumption,

following Ref. [17], that FSI can be disregarded.

Recently, duality in lepton–nucleon scattering was investigated theoretically within the Sato–Lee [18], Rein–Sehgal

[19] and Dortmund–group [20] models for resonance production. In this paper, we follow the approach used in [20] and

extend it to calculate the nuclear structure functions. In particular, in the resonance region we take into account the

first four low–mass baryon resonances P33(1232), P11(1440), D13(1520), S11(1535) and describe the vertices of their

leptoproduction within a phenomenological form-factor approach. The nucleon structure functions Wi are defined by

the standard expansion of the hadronic tensor

Wµν = −gµνW1 +
pµpν

m2
N

W2 − iεµνλσ
pλqσ

2m2
N

W3 +
qµqν

m2
N

W4 +
pµqν + pνqµ

m2
N

W5 . (2)

Each Wi depends on two independent kinematic variables, for example Q2 and ν, which are determined exclusively

by the lepton kinematics. Another set of variables, namely Q2 and W , is also possible, since the invariant mass W ,

defined as W 2 = (p + q)2, for a free target nucleon can be uniquely related to Q2 and ν: W 2 = m2
N + 2mNν − Q2.

The analytical expressions for the one–nucleon structure functions F1 = mNW1, F2 = νW2, F3 = νW3 in terms of

form factors for a free nucleon as well as the form factors themselves are given in [20]. The Fermi motion of the

bound nucleon modifies the expression for the scalar product (q · p), so that the invariant mass W 2 = (p + q)2 will

now depend on the nucleon momentum and binding energy. The variables Q2 and ν, being determined by lepton

kinematics only, remain unaffected. Strictly speaking, the expansion in Eq. (2) is only valid for a free (on–mass shell)

target nucleon. For a bound nucleon, all inclusive observables depend not only on ν and Q2, but also on an additional

independent kinematical variable, which can be chosen to be pµpµ = p2. Here, we make the assumption (see [21]

for a detailed discussion) that expression (2) can still be used to define the bound–nucleon structure functions, and

recalculate them keeping the kinematical variable p2 as an independent one. The results are given below for the

W2 and W3 structure functions. Equating p2 = m2
N , the free-nucleon results of [20] are easily reproduced. For the

spin-3/2 resonances (P33(1232) and D13(1520) in our case) one has

Wi(Q
2, ν, p2) =

2

3mN
Vi(Q

2, ν, p2)R(W, MR), (3)

where R(W, MR) is the finite representation of the δ−function δ(W 2−M2
R), which gives the relativistic Breit–Wigner

distribution:

R(W, MR) =
MRΓR

π

1

(W 2 − M2
R)2 + M2

RΓ2
R

,

and the Vi are given below. The upper and lower signs are for the positive (P33(1232)) and negative (D13(1520))

parity resonances, respectively.

V2 =
(CV

3 )2 + (CA
3 )2

M2
R

Q2
[

q · p + p2 + M2
R

]

+

(

(CV
4 )2

m2
N

+
(CV

5 )2(Q2 + M2
R)

m2
NM2

R

+
2CV

4 CV
5

m2
N

)

Q2
[

q · p + p2 ∓ mNMR

]
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+
CV

3 CV
4

mNMR
Q2

[

q · p + p2 + M2
R ∓ 2mNMR

]

+
CA

3 CA
4

mNMR
Q2

[

q · p + p2 + M2
R ± 2mNMR

]

+ CA
3 CA

5

mN

MR
Q2

+
CV

3 CV
5

mNMR
Q2

[

q · p + p2 + M2
R ∓ 2mNMR + Q2

]

+

[

(CA
5 )2

m2
N

M2
R

+
(CA

4 )2

m2
N

Q2

]

[

q · p + p2 ± mNMR

]

, (4)

V3 = 2
CV

3 CA
3

M2
R

[

2(Q2 − q · p)2 + M2
R(3Q2 − 4q · p)

]

+ 2

[

CV
4 CA

4

m2
N

(Q2 − q · p) − CV
4 CA

5

]

(Q2 − q · p)

+ 2
CV

5 CA
3 q · p − CV

4 CA
3 (Q2 − q · p)

MRmN

[

2M2
R ∓ 2mNMR + Q2 − q · p

]

+ 2

[

CV
5 CA

5 − CV
5 CA

4

m2
N

(Q2 − q · p)

]

q · p

+ 2

[

CV
3 CA

5

mN

MR
− CV

3 CA
4

MRmN
(Q2 − q · p)

]

(

2M2
R ± 2mNMR + Q2 − q · p

)

(5)

For spin-1/2 resonances we have

Wi(Q
2, ν, p2) =

1

mN
Vi(Q

2, ν, p2)R(W, MR) ,

where

V2 = 2m2
N

[

(gV
1 )2

µ4
Q4 +

(gV
2 )2

µ2
Q2 + (gA

1 )2
]

, (6)

V3 = 4m2
N

[

gV
1 gA

1

µ2
Q2 +

gV
2 gA

1

µ
(MR ± mN )

]

, (7)

and µ = mN + MR. The upper and lower signs again correspond to positive (P11(1440)) and negative (S11(1535))

parity resonances, respectively. In the case of electroproduction, all axial form factors should be put equal to zero

and the weak vector form factors should be replaced by the electromagnetic ones for proton or neutron, depending

on the target nucleon. To make the article self-contained, we present the transition form factors for each resonance.

Electromagnetic and weak vector form factors were determined in [20] by fitting the electroproduction data on helicity

amplitudes in the region Q2 < 3 GeV2. Recently, it was shown [22] that in order to satisfy the asymptotics for

helicity amplitudes at Q2 → ∞, as prescribed by perturbative QCD, the vector form factors should also exhibit a

certain asymptotic Q2 behavior. Therefore, we refitted the form factors according to this prescription. In the region

Q2 ≤ 4 GeV2, however, the difference between our new fit and the one performed in [20] falls within the accuracy

of the experimentally extracted helicity amplitudes. To be on the safe side for higher Q2 values, further attempts

to improve the fits of the form factors (for example, in accordance to upcoming data on helicity amplitudes) will be

done within the framework of the arguments presented in [22]. The axial form factors are the ones used in [13] for

the “fast” fall–off case. Thus, we use the following form factors

P33(1232) : C
(p)
3 = 2.14/DV

1+Q2/4M2

V

, C
(p)
4 = −1.56/DV

(1+Q2/7.3M2

V
)2

, C
(p)
5 = 0.83/DV

(1+Q2/0.95M2

V
)2

,

C
(n)
i = C

(p)
i , CV

i = C
(p)
i ,

CA
3 = 0, CA

4 = −CA
5 /4, CA

5 = 1.2/DA

1+Q2/3M2

A

, CA
6 = m2

N
CA

5

m2
π+Q2 ,

(8)
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P11(1440) : g
(p)
1 = 2.2/DV

1+Q2/1.2M2

V

[

1. + 0.97 ln
(

1. + Q2

1 GeV2

)]

, g
(p)
2 = −0.76/DV

(1+Q2/43M2

V
)2

[

1 − 2.08 ln
(

1 + Q2

1 GeV2

)]

,

g
(n)
i = −g

(p)
i , gV

i = g
(n)
i − g

(p)
i ,

gA
1 = −0.51/DA

1+Q2/3M2

A

, gA
3 = (MR+mN )mN

Q2+m2
π

gA
1

(P ),

(9)

D13(1520) : C
(p)
3 = 2.95/DV

1+Q2/8.0M2

V

, C
(p)
4 = −1.05/DV

(1+Q2/17M2

V
)2

, C
(p)
5 = −0.48/DV

(1+Q2/37M2

V
)2

.

C
(n)
3 = −1.13/DV

1+Q2/8.0M2

V

, C
(n)
4 = 0.46/DV

(1+Q2/17M2

V
)2

, C
(n)
5 = −0.17/DV

(1+Q2/37M2

V
)2

,

CV
i = C

(n)
i − C

(p)
i ,

CA
3 = 0, CA

4 = 0, CA
5 = −2.1/DA

1+Q2/3M2

A

, CA
6 = m2

N
CA

5

m2
π+Q2 ,

(10)

S11(1535) : g
(p)
1 = 1.87/DV

1+Q2/1.2M2

V

[

1 + 7.07 ln
(

1 + Q2

1 GeV2

)]

, g
(p)
2 = 0.64/DV

(1+Q2/17M2

V
)2

[

1 + 1.0 ln
(

1 + Q2

1 GeV2

)]

,

g
(n)
i = −g

(p)
i , gV

i = g
(n)
i − g

(p)
i ,

gA
1 = −0.21/DA

1+Q2/3M2

A

, gA
3 = (MR−mN )mN

Q2+m2
π

gA
1 .

(11)

Here, DV = (1 + Q2/M2
V )2 with MV = 0.84 GeV and DA = (1 + Q2/M2

A)2 with MA = 1.05 GeV. The weak form

factors presented here are determined for the excitation of the R+ resonance state, i.e. for neutrino scattering on a

neutron. For the excitation of the double charged states, which is possible for isospin-3/2 resonances in neutrino–

proton scattering, the isospin relation gives an additional factor
√

3 for each form factor.

For the resonance widths we use the so called running widths ΓR(W ), as they were presented in Ref. [20]:

ΓR(W ) = Γ0
R

(

pπ(W )

pπ(MR)

)2sR

, (12)

where sR is the spin of the resonance, on–shell widths are Γ0
∆ = 0.12 GeV, Γ0

P1440 = 0.350 GeV, Γ0
D1520 = 0.125 GeV,

Γ0
S1535 = 0.150 GeV, and

pπ(W ) =
1

2W

√

(W 2 − m2
N − m2

π)2 − 4m2
Nm2

π .

B. Definition of the nuclear structure functions

For nuclear targets, the nuclear structure functions WA
i can be defined in the standard manner by means of the

expansion of the nuclear hadronic tensor

WA
µν = −gµνWA

1 +
pA

µ pA
ν

M2
A

WA
2 − iεµνλσ

pλ
Aqσ

2M2
A

WA
3 +

qµqν

M2
A

WA
4 +

pA
µ qν + pA

ν qµ

M2
A

WA
5 , (13)

where pA, µ = (MA,~0) is the four–momentum of the target nucleus with mass MA in the laboratory frame of reference.

In the impulse approximation we are dealing with the bound nucleon as a target, so we must relate the one–bound–

nucleon structure functions introduced in the previous section to nuclear ones. We follow the prescription of Ref. [23]

and express the nuclear structure functions in terms of the nucleon ones in terms of a convolution of the type

WA
µν =

∑

α

∫

d3p (2jα + 1)nα(p)(W p
µν(α) + Wn

µν(α)) , (14)
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where α extends over single–particle shells in the target nucleus and 2jα + 1 specifies their occupancies.

It is worth stressing that in the original paper [23] as well as in [21] an additional phase–space correction factor

Ep/mN is introduced in the expression (14) to preserve the space volume under Lorentz transformation. Since we

construct a momentum distribution from wave functions normalized as u†
αuα = 1 for each shell α, our correction

factor must be equal to 1.

Substituting (2) and (13) in (14), one arrives at

WA
1 (Q2, ν) =

∑

α

W(α)
1 (Q2, ν) =

∑

α

∫

d3p (2jα + 1)nα(p)

[

W1(Q
2, ν, p2) + W2(Q

2, ν, p2)
|~p|2 − p2

z

m2
N

]

,

WA
2 (Q2, ν) =

∑

α

W(α)
2 (Q2, ν) =

∑

α

∫

d3p (2jα + 1)nα(p)W2(Q
2, ν, p2)

[

|~p|2 − p2
z

m2
N

Q2

q2
z

+

(

(p · q)
mNν

)2 (

1 +
pz

qz

Q2

(p · q)

)2
]

.

(15)

This prescription guarantees, that as Q2 tends to zero, the longitudinal structure function WL also tends to zero as

expected for the real photon:

lim
Q2→0

[

ν2

Q2
WA

2 (Q2, ν) −WA
1 (Q2, ν)

]

= 0 . (16)

In neutrino experiments one can also measure the W3 structure function, for which our definition gives:

WA
3 (Q2, ν) =

∑

α

∫

d3p (2jα + 1)nα(p)W3(Q
2, ν, p2)

MA

m2
N

p0qz − νpz

qz
. (17)

Note that W3 depends on the nucleus mass MA. Realizing that the Bjorken variable for a nucleus (xA = Q2/2MAν)

differs from the one for a nucleon (x = Q2/2mNν), the function that is independent of MA is xAFA
3 :

xAFA
3 =

∑

α

∫

d3p (2jα + 1)nα(p)xF3(Q
2, ν, p)

1

mN

p0qz − νpz

qz
. (18)

According to the definition (15), FA
2 = νWA

2 and xAFA
1 = xAMAWA

1 are also independent on MA.

Within the adopted approach there is no unambiguous recipe for deciding whether one should keep mN in the

denominators of (15) or replace it with some effective mass, that corrects for the binding energy. For the numerical

calculations presented here, we have opted to use the expression (15) and interpret the mN as the free nucleon mass.

The integration over d3p = |~p|2 d|~p| d cos γp dϕp in Eq. (15) is performed in the following way. Integration over the

azimuthal angle dϕp gives 2π, since no structure function depends on it. The phase space in the plane determined

by the absolute momentum value |~p| and polar angle γp is restricted by the condition W 2 > W 2
min. For one–pion

production one has that Wmin = mN + mπ. For a a bound nucleon this condition translates into

p2
0 − |~p|2 + 2p0ν − 2|~p|

√

Q2 + ν2 cos γp − Q2 > W 2
min . (19)

When performing the d3p integrations, the above condition determines the boundaries of the absolute bound-nucleon

momentum |~p| for a given cos γp, Q2 and ν:

|~p|± = −
√

Q2 + ν2 cos γp ±
√

(Q2 + ν2) cos2 γp + p2
0 + 2p0ν − Q2 − W 2

min . (20)

The sign of the quantity W 2
min +Q2−p2

0−2p0ν discriminates between two classes of kinematic conditions. In what

follows we provide a discussion of the values of pmin and pmax in the phase-space integration
∫ pmax

pmin
dp for a positive

and negative sign of W 2
min + Q2 − p2

0 − 2p0ν. For

W 2
min + Q2 − p2

0 − 2p0ν < 0 , (21)
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the |~p|− calculated according to (20) is negative, so one should take pmin(Q2, ν, cos γp) = 0. This means that the

phase space (21) is accessible for a nucleon with arbitrarily small three-momentum, including |~p| = 0, as is the case

for a free nucleon. When the condition (21) is fullfilled, pmax(Q2, ν, cos γp) = |~p|+(Q2, ν, cos γp) for all polar angles

γp.

Increasing the phase space for the bound nucleon does not necessarily imply that the cross section grows, because

each point in the phase space gets weighted with a momentum distribution of the type shown in Fig. 1. Cross sections

and structure functions for high |~p| are strongly suppressed and the major contributions stem from the momenta

inside the Fermi sphere.

For

W 2
min + Q2 − p2

0 − 2p0ν > 0 , (22)

the |~p|± are only defined for backward moving target nucleons. The restrictions on cos γp for given Q2 and ν come

from the condition

(Q2 + ν2) cos2 γp + p2
0 + 2p0ν − Q2 − W 2

min > 0 , (23)

which gives

− 1 < cos γp(Q
2, ν) < −

√

W 2
min + Q2 − p2

0 − 2p0ν

Q2 + ν2
. (24)

Since the minimal value of the three-momentum |~p|− is positive in this case, the accessibility to this (Q2, ν) region

crucially depends on a nucleon already moving, which is only possible for a bound nucleon. This region of phase space

grows in importance with increasing Q2.

For Q2 = 0.1 GeV2 and different ν, the typical phase spaces available for a 1s1/2 proton in carbon are shown in

Fig. 2. We use polar coordinates for the variables |~p| and γp. The left (right) panel corresponds with the condition

(22) ((21)). For each Q2 and ν, thick lines represent |~p|+ and thin lines |~p|−. The points where the |~p|+ and |~p|−
lines coincide correspond to the upper boundary on cos γp, as calculated in Eq.(24). Remark that the available phase

space in (|~p|, cos γp) is contained within a circle. At ν = 0.4 GeV the left part of the circle is not shown because it

corresponds to values of |~p| larger than 1 GeV. The momentum distribution of nucleons in nuclei will reduce those

contributions to negligible proportions.

The phase space collapses to one point cos γp = −1, |~p| =
√

Q2 + ν2
min for νmin = −p0 + Wmin. Remark that for a

bound nucleon the minimal value of ν does not depend on Q2. Physically this means that for any Q2 there is a bound

nucleon moving backward fast enough to fulfill the requirement (p + q)2 > W 2
min. Thus, contrary to the free nucleon

case, for the off-shell nucleon the pion production threshold is defined in terms of ν rather than invariant mass and,

strictly speaking, is independent of Q2.

At high Q2, however, using νmin = −p0 + Wmin is not convenient for calculations, because all observables are

strongly suppressed for large ~p inspite of the fact that the phase space is available. In our numerical calculations

we have not considered nucleon momenta beyond three times the Fermi momentum. We stress that the phase space

boundaries derived here depend on our assumption about the form of the four–momentum for the bound nucleon,

which was taken as pµ = (mN − eα, ~p).
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FIG. 2: Sketch of the available (|~p| , γp) phase space in polar coordinates. We consider a 1s1/2 proton in carbon for Q2 =

0.1 GeV2 and different ν. The |~p| is expressed in GeV. The left (right) panel corresponds with kinematics conditions obeying

the condition of Eq. (22) (of Eq. (21)).

C. DIS region and scaling variable

In the kinematical regime of high Q2 and ν, the so-called Bjorken limit, the structure functions depend only on

the Bjorken variable x = Q2/2mNν when one neglects higher-twist effects. This phenomenon of no observed Q2

dependence for a fixed x value is called Bjorken scaling. At these energies, the lepton scattering on nucleons and

nuclei is dominated by deep inelastic scattering with a multiple–particle hadronic final state. Deep inelastic scattering

on nuclei was intensively studied experimentally since the sixties. This experimental information will be used as DIS

input for our investigation.

For electron–carbon scattering, F2 was measured by the BCDMS Collaboration [24, 25] for 30 GeV2 < Q2 <

200 GeV2. We choose several sets of data at different Q2 = Q2
DIS: 30, 45 and 50 GeV2. As expected from Bjorken

scaling, for most of the x region the data coincide with an accuracy better than 5%. For iron, the neutrino scattering

results are available from the CCFR [26] and NuTeV [27] collaborations.

Scaling structure functions are conventionally plotted against the Bjorken variable x. Violation of Bjorken scaling

comes from target-mass corrections and higher-twist effects. In the scaling region, the Nachtmann variable ξ =

2x/(1+
√

1 + 4m2
Nx2/Q2) was shown [28, 29] to be a better alternative, because it implicitly includes the kinematical

part of the target-mass correction, which can be important at large x and low Q2. Expanding the inverse of this

variable in a power series of 1/Q2, we recover the variable 1/ξ ≈ ω′ = (2mNν + m2
N )/Q2, used by Bloom and Gilman

in their pioneering work on duality. For large ν, one has ω′ ≈ 1/x.

III. DUALITY IN ELECTROPRODUCTION

In the case of an isoscalar target nucleon, and for Q2 > 0.5 GeV2, it was shown [13] that Bloom–Gilman duality

holds at the level of 20%. Here, we compute the nuclear structure functions FA
2 and xAFA

1 along the model outlined

in Section II. The results of our description of the resonance region in terms of hadronic degrees of freedom are then

compared to DIS data.
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In Figure 3, the bound–nucleon structure functions F2 and 2xF1 for a proton in the 1s1/2 and 1p3/2 carbon shells

are contrasted with the structure functions for a free proton. They are plotted versus the Nachtmann variable ξ for

Q2 = 0.2, 0.85, and 2.4 GeV2, with the largest Q2 curves covering the largest ξ values. Similar to the free–nucleon

case, for a fixed Q2, the peak at larger ξ corresponds to the ∆ resonance and the peak at smaller ξ corresponds to the

second resonance region. One can easily notice the effect of smearing: the two resonance regions are distinguishable

only at low Q2. Fermi smearing proceeds differently for different shells, which in turn introduces an additional

averaging when summing over shells. One can also observe that the bound–nucleon curves extend to higher ξ values

than the free nucleon ones. This additional contribution comes from the phase space at low ν values, which is shown

in the left panel of Fig. 2 and discussed in Section II B. At high ξ the F2 and 2xF1 for the 1s1/2 shell are significantly

lower than for the 1p3/2 shell. At high ξ the phase space extends to relatively large bound-nucleon momenta. For

those momenta the momentum distribution for a shell close to the Fermi surface (like 1p3/2 in carbon) is larger than

for a deep-lying shell (like 1s1/2 in carbon).
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FIG. 3: (color online) Structure functions F2 (left) and 2xF1 (right) for a free proton (solid curve), for 1s1/2 (dashed curve)

and 1p3/2 (dash–dotted curve) protons in 12C. The three sets of curves correspond to Q2 = 0.2, 0.85, and 2.4 GeV2

Fig. 4 shows the carbon structure function per nucleon F e12C
2 /A in the resonance region for several Q2 values,

from 0.45 to 3.3 GeV2. When investigating duality for a free nucleon, we took the average over free proton and

neutron targets, thus considering the isoscalar structure function. Since the carbon nucleus contains an equal number

of protons and neutrons, averaging over isospin is performed automatically. At Q2 = 0.45 GeV2, the ∆ peak is

pronounced and can still be distinguished from the second resonance peak, which is also visible. At higher Q2 one

cannot distinguish the resonance structure anymore and the first and second resonance region merge into one broad

peak.

In the left panel of Fig. 4, the resonance structure functions are compared with data obtained by the BCDMS

Collaboration [24, 25] in muon–carbon scattering in the DIS region (Q2 ∼ 30 − 50 GeV2). They are shown as

experimental points connected by smooth curves. For different Q2 values, the curves agree within 5% in most of the ξ

region, as expected from Bjorken scaling. One observes that, as Q2 increases, the resonance peaks decrease in height

and slide along the DIS curve. This means that global duality holds for electron scattering on nuclei. To characterize
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FIG. 4: (color online) Duality for the F e12C
2 structure function. (Left) Resonance curves F e12C

2 /12 as a function of ξ, for

Q2 = 0.45, 0.85, 1.4, 2.4 and 3.3 GeV2 (indicated on the spectra), compared with the experimental data [24, 25] in the DIS

region at Q2
DIS = 30, 45 and 50 GeV2. (Right) Ratio I2 defined in Eq.(25) for the free nucleon (dash-dotted line), and 12c. We

consider the under limits determined by W̃ = 1.1 GeV (solid line) and by the threshold value (dotted line).

local duality, we consider the ratio of the integrals of the resonance (res) and DIS structure functions

Ii(Q
2) =

∫ ξmax

ξmin

dξ F (res)
i (ξ, Q2)

∫ ξmax

ξmin

dξ F (DIS)
i (ξ, Q2

DIS)
, (25)

where Fi denotes FA
2 or xAFA

3 (used later for neutrino scattering). The value Q2
DIS is taken as the actual Q2 value

for a given experimental data set. For electron–carbon scattering we choose the data set [25] at Q2
DIS = 50 GeV2,

because it covers most of the ξ region. For a proton target [3], the integration limits for ξ are conventionally chosen

equal for both integrals and are defined in such a way as to cover the first and second resonance regions for each Q2.

For a free nucleon, this requirement is written as [13]

ξN
min = ξ(W = 1.6 GeV, Q2), ξN

max = ξ(W = 1.1 GeV, Q2), (26)

where the invariant mass for a free nucleon can be expressed in terms of ν and Q2 as W 2 = (p+q)2 = m2
N +2mNν−Q2.

The upper value W = 1.6 GeV is chosen in such a way as to cover the mass range of the four resonances taken into

account, the heaviest one with the mass MR = 1.535 GeV. The lower value W = 1.1 GeV is chosen close to the

pion–production threshold Wthr = 1.08 GeV. In a nuclear target, the invariant mass of the struck nucleon depends on

the initial momentum of the target nucleon. On the other hand, the structure functions, as well as other observables,

are defined as integrals over the initial nucleon momentum. This prevents one from using W in defining the integration

limits. One needs an alternative variable, which can be easily determined from the lepton kinematics.

Experimentally one often (see, for example, [30]) “defines” the effective variable W̃ by the relation W̃ 2 = m2
N +

2mNν −Q2. Notice that W̃ is only an invariant for ~p = 0. However, it gives a reasonable feeling of the invariant mass

region involved in the problem. In particular, the resonance curves presented in all figures are plotted in the region

from the pion–production threshold up to W̃ = 2 GeV. As was illustrated in Fig. 2, bound backward-moving nucleons

allow lower ν values beyond the free–nucleon limits. Thus, as discussed at the end of Secton II B, the threshold for

the structure functions is now defined in terms of ν or W̃ , rather than W . Hence, we consider two different cases in
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choosing the ξ integration limits for the ratio (25). First, for a given Q2, we choose the ξ limits as in Eq. (26). That

amounts to defining them by the condition

ξmin = ξ(W̃ = 1.6 GeV, Q2), ξmax = ξ(W̃ = 1.1 GeV, Q2) . (27)

We refer to this choice as integrating “from 1.1 GeV”. The integration limits for the DIS curve always correspond

to this choice. As a second choice, for each Q2 we integrate the resonance curve from the threshold, that is from as

low W̃ as achievable for the nucleus under consideration. This corresponds to the threshold value at higher ξ and

is referred to as integrating “from threshold”. With this choice we guarantee that the extended kinematical regions

typical for resonance production from nuclei are taken into account. Since there is no natural threshold for the ξmin,

for both choices it is estimated from W̃ = 1.6 GeV, as defined in Eq. (27).

The results for the ratio in Eq. (25) are shown in the right panel of Fig. 4. The curve for the isoscalar free-nucleon

case is the same as in Ref. [13] with the “GRV” parameterization for the DIS structure function. One can see that the

carbon curve obtained by integrating “from threshold” lies above the one obtained by integrating “from 1.1 GeV”,

the difference increasing with Q2. This indicates that the threshold region becomes more and more significant, as one

can see from Fig. 3. The closer the ratio (25) gets to 1, the higher the accuracy of local duality is. Our calculations

for a carbon target show that: 1) the ratio grows with Q2, just like in the isoscalar free-nucleon case; 2) the ratio is

lower than the free-nucleon value for both choices of the integration limits. This means that the integrated resonance

contribution is always smaller than the integrated DIS one. In search for an explanation for this discrepancy, we
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FIG. 5: Electromagnetic structure functions F2 in DIS region for a free isoscalar nucleon as obtained via the GRV parameteri-

zation at Q2 = 10 GeV2 (solid curve) and for a carbon nucleus as measured experimentally at Q2 = 30, 45 and 50 GeV2.

compare how nuclear effects influence the resonance and DIS curves. As it was illlustrated in Fig. 3, the nuclear

effects suppress the resonance peaks by 40%-50%, broaden them and shift them to lower ξ values. The experimental

DIS values for the carbon nucleus, on the other hand, are only 5%−10% lower than the DIS curve for the free isoscalar

nucleon. This is illustrated in Fig. 5, where the DIS structure function F2 for a carbon target is compared to the

GRV parameterization for the free isoscalar nucleon at Q2 = 10 GeV2. In conclusion, one can say that nuclear effects

have a much more dramatic effect in the resonance region than in the DIS regime.
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Similar calculations can be done for other nuclei. First of all, it would be interesting to compare an isoscalar

nucleus with a nucleus with neutron excess. We show the structure functions (F e 56Fe
2 /56) and (F e 52Fe

2 /52) versus

W̃ for several Q2 values in the left panel of Fig. 6. The structure functions for 52Fe are only marginally higher than

those for 56Fe. This can be explained by the fact that the electromagnetic ∆-production cross section is equal for

proton and neutron targets. In the second resonance region, the cross sections on the proton are typically 5%− 30%

higher than those for the neutron. The overall effect, however, is hardly visible for an excess of 4 neutrons out of 56

nucleons. From an experimental point of view, it is also interesting to compare carbon with iron target nuclei. In the
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FIG. 6: (color online) (Left) Structure functions F2 for electroproduction on iron-52 and iron-56 versus W̃ . Curves are for

Q2 = 0.2, 0.45, 0.85, 1.4, and 2.4 GeV2 (indicated on the spectra). (Left) Ratio (F e56F e
2 /56)/(F e12C

2 /12) versus Bjorken variable

x compared to DIS data [31].

right panel of Fig. 6, we plot the ratio of structure functions (F e56Fe
2 /56)/(F e12C

2 /12) versus x for several values of Q2

ranging from 0.2 GeV2 to 3.3 GeV2. All curves are shown in the ξ region corresponding to 1.1 GeV < W̃ < 2.0 GeV.

We stress that there is little physical meaning in the fine structure of the curves in the right panel of Fig. 6. The

peaks in the curves, for example, do not coincide with the resonance peaks. As one can see, the iron structure

functions appear to be very close to the carbon ones: for each Q2 the ratio of the iron to carbon structure functions

does not deviate more than 5% from the value of 1. When averaged, this ratio slightly decreases with increasing Q2,

a behavior which is also exhibited by the DIS data presented in the same figure. The latter were measured by the

NMC Collaboration [31], the mean Q2 in the experiment varying from 20 GeV2 for x ∼ 0.1 to 60 GeV2 for x → 1.

IV. DUALITY IN NEUTRINOPRODUCTION

In a previous paper [13] it was demonstrated that in neutrino reactions quark–hadron duality does not hold for

proton and neutron targets separately. This is a principle feature of neutrino interactions, stemming from fundamental

isospin arguments. For the charged current reaction νµ p → µ− R++, only isospin-3/2 R++ resonances are excited, in

particular the P33(1232) resonance. Because of isospin symmetry constraints, the neutrino-proton structure functions

for these resonances are three times larger than the neutrino-neutron ones. In neutrino-neutron scattering, both the

isospin-3/2 resonances and the isospin-1/2 resonances contribute to the structure functions. The interplay between

the resonances of different isospins allows for duality to hold with reasonable accuracy for the average over the proton
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and neutron targets. It appears reasonable that one may expect a similar picture to emerge in neutrino reactions

with nuclei.
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3 defined in Eq. (25) for the free nucleon (dash-dotted line) and 56Fe. For 56Fe

the results are displayed for two choices of the underlimit in the integral: W̃ = 1.1 GeV (solid line) and threshold (dotted line).

For each of these two choices we have used two sets of DIS data in determining the denominator of Eq. (25). These sets of DIS

data are obtained at Q2
DIS = 12.59 and 19.95 GeV2.

The structure functions FA
2 and xAFA

3 for neutrino–iron scattering are shown in Fig. 7. The curves for the isoscalar

free nucleon case is identical to the one presented in Ref. [13] with the “fast” fall–off of the axial form factors for the

isospin-1/2 resonances.

Like for the electron-carbon results of Fig. 3, the resonance structure is hardly visible. Indeed for each Q2 the

computed resonance curves display one broad peak. The resonance structure functions are compared with the exper-

imental data in DIS region obtained by the CCFR [26] and NuTeV [27] collaborations. It appears that the resonance

curves slide along the DIS curve, which indicates global duality. Like for the electron results discussed in previous

section, however, the resonance FA
2 and xAFA

3 predictions are noticeably lower than the DIS measurements.
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The ratios Iν 56Fe
2 and Iν 56Fe

3 defined in Eq.(25) are shown in Fig. 8. Our results show, that 1) these ratios are

significantly smaller than 1; 2) they are significantly smaller than the one for the free nucleon ; 3) I2 is lower than

the corresponding ratio for electroproduction; 4) I2 and I3 slightly decrease with Q2 which is the opposite behavior

of what was observed for electrons.
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FIG. 9: (color online) (Left) Weak structure functions F2 in the resonance region for a free neutron (solid curve), for 1s1/2

(dashed curve), 1p3/2 (dash–dotted curve), 1d5/2 (long-dashed curve) and 1f7/2 (short-dashed curve) neutrons in 56Fe. The

three sets of curves correspond to Q2 = 0.2, 0.85, and 2.4 GeV2. (Right) Weak structure functions F2 in DIS region for a free

isoscalar nucleon as obtained via GRV parameterization at Q2 = 10 GeV2 (solid curve) and for iron-56 nucleus as measured

experimentally [26, 27] at Q2 = 7.94, 12.59 and 19.95 GeV2.

In an attempt to explain the above observations, we compare the free isoscalar structure functions with the 56Fe

ones. In the left panel of Fig. 9 the structure function FA
2 for a neutron in the 1s1/2, 1p3/2, 1d5/2 and 1f7/2 iron

shells are contrasted with the structure function for a free neutron. For a fixed Q2, the peak at the larger value of

the Nachtmann variable corresponds to the ∆ resonance. The peak at smaller ξ corresponds to the second resonance

region. It is clear that the nuclear effects reduce the peaks by about 30 − 50% and shift them to lower ξ values in

comparison with the free nucleon case. The suppression is most significant for the single-particle shells close to the

Fermi surface.

In close resemblance to what was observed in the discussion of the electron-nucleus cross sections of previous section,

the peculiar Fermi smearing pattern for each shell introduces additional averaging when summing over shells. For

a bound proton, the effect of suppression is nearly the same. In the right panel of Fig. 9, measured DIS structure

functions for 56Fe at various Q2 are compared to the GRV parameterization (Q2 = 10 GeV2) for a free isoscalar

nucleon [13]. It is obvious that the measured nuclear DIS structure functions are very similar to the free-nucleon ones.

Thus, we predict a substantial nuclear reduction of the resonance strength, whereas the data in the DIS region do not

point to such a reduction. This explains the computed low values of the ratios in Fig. 8.

We wish to stress that the low values of Iν 56Fe
2 and Iν 56Fe

3 are not related to the neutron excess. We remind that

the neutron structure functions for the ∆ resonance are 3 times smaller than the proton ones. The structure function

for isoscalar 52Fe is only about 5% larger than for 56Fe. This is shown in Fig. 10 for F2 and xAF3. The effect can be

easily estimated from (26 · 3 · f + 30 · f)/(26 · 3 · f + 26 · f) ≈ 1.04, where f is the neutron structure function in the ∆

region. In the second resonance region the difference is even smaller.
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It is also interesting to make a comparison with the carbon nucleus. The ratios of iron to carbon structure functions

FA
2 and xAFA

3 versus x are shown in Fig. 11. For each Q2 the ξ range corresponds to 1.1 < W̃ < 2.0 GeV. Like in

the case of electromagnetic reaction, the ratios are close to 1, but a bit lower in general and the average is slightly

increasing with Q2. Remark that the peaks in Fig. 11 are not related to resonances and that the fluctuations which

are of the order of 5% can be attributed to subtleties in the shell structure of the various target nuclei.

V. SUMMARY

In view of the current experimental activities, there is great need for an efficient framework for reliably predicting

neutrino–nucleus cross sections and for a deeper understanding of quark–hadron duality in nuclei. We performed a

phenomenological study of duality in electron-nucleus and neutrino-nucleus structure functions.

Using the Dortmund-group model for the production of the first four lowest-lying nucleon resonances and using

single-particle wavefunctions from the Hartree approximation to the relativistic σω model, we computed the structure
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functions xAFA
1 , FA

2 and xAFA
3 in the resonance region for carbon and iron targets and compared them with the

measured DIS ones. At the same time we compared the computed resonance structure functions for nuclei with those

for a free nucleon. For quantitative comparisons, we defined the ratios Ii(Q
2) of integrated resonance to DIS structure

functions. Perfect quark-hadron duality is reached for Ii(Q
2) values of unity.

Summarizing our results, we observe that the computed resonance contribution to the lepton–nucleus structure

functions is qualitatively consistent with the measured DIS structure functions. This means that global quark–hadron

duality holds for nuclei. The computed integrated resonance strength, however, is about half of the measured DIS

one. Contrary to the free nucleon case, where the ratios Ii(Q
2) are at the level of 0.8, we find for nuclei 0.6 for

electroproduction and 0.4 for neutrinoproduction. This points towards a scale dependence in the role of the nuclear

effects. It is obvious that nuclear effects act differently at lower Q2 (resonance regime) than at higher Q2 (DIS regime).

In our presented analysis we include the resonance contributions and ignored the role of the background terms.

Further investigations require a theoretical or phenomenological model for the background contributions in the first

and second resonance region. One could for example estimate the role of the background contribution to the ∆–

resonance region within the context of the non-linear sigma model [32]. Extending these or similar models to higher

W values and incorporating them in a model for lepton reactions with nuclei could be the next step in exploring

quark–hadron duality.
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