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Abstract

A relativistic and quantum mechanical framework to compute nuclear transparencies for pion

photo- and electroproduction reactions is presented. Final-state interactions for the ejected pions

and nucleons are implemented in a relativistic eikonal approach. At sufficiently large ejectile en-

ergies, a relativistic Glauber model can be adopted. At lower energies, the framework possesses

the flexibility to use relativistic optical potentials. The proposed model can account for the color-

transparency (CT) phenomenon and short-range correlations (SRC) in the nucleus. Results are

presented for kinematics corresponding to completed and planned experiments at Jefferson Lab.

The influence of CT and SRC on the nuclear transparency is studied. Both the SRC and CT mech-

anisms increase the nuclear transparency. The two mechanisms can be clearly separated, though,

as they exhibit a completely different dependence on the hard scale parameter. The nucleon and

pion transparencies as computed in the relativistic Glauber approach are compared with optical-

potential and semi-classical calculations. The similarities in the trends and magnitudes of the

computed nuclear transparencies indicate that they are not subject to strong model dependences.
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I. INTRODUCTION

A commonly used variable to map the transition from hadronic to partonic degrees of

freedom is the nuclear transparency. For a given reaction process, it is defined as the ratio

of the cross section per target nucleon to the one from a free nucleon. Accordingly, the

nuclear transparency provides a measure of the attenuation effects of the nuclear medium

on the hadrons produced in some reaction. A phenomenon finding its roots in QCD is color

transparency (CT). It predicts the reduction of final-state interactions (FSI) of the pro-

duced hadron with the surrounding nuclear medium at sufficiently high momentum transfer.

Thereby, the hadron is created in a point-like configuration (PLC) and propagates as a color

singlet through the nucleus before evolving to the normal hadron state. If CT effects were

to appear at a certain energy, the nuclear transparency would be observed to overshoot the

predictions from traditional nuclear physics expectations.

Measurements of nuclear transparencies in search of CT have been carried out with the

A(p, 2p) [1–4] and A(e, e′p) [5–10] reactions, ρ-meson production [11, 12] and diffractive

dissociation of pions into di-jets [13]. Nuclear transparencies for the pion photoproduction

process γn→ π−p in 4He have been measured in Hall A at Jefferson Laboratory (JLab)[14].

A Hall C experiment has extracted the nuclear transparency for the pion electroproduction

process ep→ e′π+n in 2H, 12C, 27Al, 63Cu and 197Au [15]. Ref. [16] reports calculations in a

semi-classical model for the latter electroproduction experiment. In Ref. [17], we introduced

a relativistic and quantum mechanical model for computing the nuclear transparencies for

the pion photoproduction reaction and compared its predictions to the 4He(γ, pπ−) data

and results from a semi-classical model developed by Gao, Holt and Pandharipande [18]. In

this paper, we outline the model in more detail and extend it to electroproduction reactions.

The intranuclear attenuation which affects the ejectiles (nucleons and pions) is modeled in

terms of a relativistic eikonal approach. The bound-state wave functions are obtained from

a relativistic mean-field model. At sufficiently small values for the de Broglie wavelength, we

use a relativistic version of Glauber multiple scattering theory. At wavelengths approaching

the range of the nucleon-nucleon and pion-nucleon interaction length, the model offers the

flexibility to use optical potentials for modeling FSI mechanisms. Short-range correlations

(SRC) induce local fluctuations in the nuclear density. These corrections beyond the mean-

field approach influence the intranuclear attenuation. The corresponding changes in the
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nuclear transparencies have been studied in great depth within the context of A(e, e′p)

reactions [19–21]. In A(γ,Nπ) and A(e, e′Nπ) processes, both the emerging nucleons and

pions are subject to these density fluctuations. The SRC are incorporated into our model

through the introduction of a well-chosen central correlation function which induces density

correlations into the final system. In our procedure, the proper normalization of the wave

functions is guaranteed.

Section II of the paper presents the formalism used to calculate the nuclear transparencies.

A factorized expression for the cross section is derived for A(γ,Nπ) (IIA) and A(e, e′Nπ)

(II B). Next, in Sect. II C the framework for computing the effects stemming from FSI are

discussed. Thereby, special attention is paid to a parametrization of the πN scattering

parameters which are required in Glauber calculations. In Sect. IID the incorporation of

the CT phenomenon and SRC is discussed. The results of our numerical calculations are

presented in Sect. III. FSI effects are investigated and transparency results are shown for

the pion photo- and electroproduction reactions from various target nuclei. Our conclusions

are stated in Sect. IV.

II. FORMALISM

In this section, the formalism used to describe A(γ,Nπ) and A(e, e′Nπ) reactions is

presented.

A. Pion photoproduction

We use the following notations for the four-momenta in the lab frame: qµ(q, ~q) for the

photon, P µ
A(EA, ~pA = ~0) for the target nucleus, P µ

A−1(EA−1, ~pA−1) for the residual nucleus,

P µ
N(EN , ~pN) and P µ

π (Eπ, ~pπ) for the ejected nucleon and pion. The missing momentum ~pm

is defined as ~pm ≡ −~pA−1 = ~pN + ~pπ − ~q and the outgoing nucleon has spin ms. The fivefold

differential cross section in the lab frame reads

d5σ

dEπdΩπdΩN

=
MA−1mNpπpN

4(2π)5qEA

f−1
rec

∑

fi

∣∣∣M(γ,Nπ)
fi

∣∣∣
2

, (1)
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where
∑

fi involves an averaging over the photon polarizations and a summation over the

spins of the final particles. The recoil factor frec is given by

frec =
EA−1

EA

∣∣∣∣1 +
EN

EA−1

(
1 +

(~pπ − ~q) · ~pN

p2
N

)∣∣∣∣ , (2)

and M(γ,Nπ)
fi denotes the invariant matrix element:

M(γ,Nπ)
fi = 〈P µ

π , P
µ
Nms, P

µ
A−1JRMR|Ô|qµ, P µ

A0+〉 , (3)

where JRMR are the quantum numbers of the residual nucleus. We restrict ourselves to

processes with an even-even target nucleus A.

The wave functions for the bound nucleons are constructed in an Independent Particle

Model (IPM). We use relativistic wave functions from the Hartree approximation to the

Walecka-model with the W1 parametrization [22]. For the sake of conciseness, only the

spatial coordinates of the nucleons are written throughout this work. The single-particle

wave functions φα adopt the following form for a spherically symmetric nuclear potential

[23]:

φα(~r) ≡ φnκm(~r, ~σ) =


 iGnκ(r)

r
Yκm(Ω, ~σ)

−Fnκ(r)
r
Y−κm(Ω, ~σ)


 . (4)

Here, n is the principal quantum number, κ andm denote the generalized angular momentum

quantum numbers. The spin spherical harmonics Y±κm are defined as:

Yκm(Ω, ~σ) =
∑
mlms

〈lml
1

2
ms|jm〉Ylml

(Ω)χ 1
2
ms

(~σ) ,

Y−κm(Ω, ~σ) =
∑
mlms

〈l̄ml
1

2
ms|jm〉Yl̄ml

(Ω)χ 1
2
ms

(~σ) , (5)

with j = |κ| − 1

2
, l =




κ, κ > 0

−κ− 1, κ < 0
, l̄ =




κ− 1, κ > 0

−κ, κ < 0
.

The ground-state wave function of the target nucleus |P µ
A0+〉 ≡ Ψg.s.

A (~r1, . . . , ~rA) is obtained

by fully anti-symmetrizing the product of the individual nucleon wave functions φα. We

model the pion photoproduction process by means of a contact interaction: the initial nu-

cleon, impinging photon, the ejected pion and nucleon, couple in a single space-time vertex.
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As the process can take place on any of the nucleons in the target nucleus, we get the

following general expression for the corresponding photoproduction operator:

Ô =
A∑

i=1

Oµ(~ri) . (6)

We assume that Ô is exempted from medium effects. This is a common assumption in nuclear

and hadronic physics and is usually referred to as the impulse or quasi-free approximation

(IA). In the context of A(e, e′p) reaction, for example, the impulse approximation provides

a fair description of the data [24]. It is also applied in the experimental analysis of Ref. [15]

and the model of Ref. [25]. The impinging photon with polarization λ is represented by

Aµ(λ,~ri) = εµ(λ)ei~q·~ri . (7)

Here, εµ(λ) is the polarization four-vector of the photon. The wave function of the ejected

nucleon is written as

|P µ
Nms〉 ≡ Ψ

(+)
~pN ,ms

(~ri) = Ŝ†N ′N(~ri;~r1, . . . , ~rj 6=i, . . . , ~rA)u(~pN ,ms)e
i~pN ·~ri , (8)

which is the product of a positive-energy Dirac plane wave φ~pN
(~ri) = u(~pN ,ms)e

i~pN ·~ri and

an operator Ŝ†N ′N . This operator describes the attenuation of the ejected nucleon through

soft final-state interactions with the other nucleons. The wave function for the ejected pion

adopts a similar form as the nucleon one, i.e. a plane wave convoluted with a FSI factor

Ŝ†πN :

|P µ
π 〉 ≡ Φ

(+)
~pπ

(~ri) = Ŝ†πN(~ri;~r1, . . . , ~rj 6=i, . . . , ~rA)ei~pπ·~ri . (9)

The final A-nucleon wave function is constructed by anti-symmetrizing Ψ
(+)
~pN ,ms

with the wave

function for the residual nucleus ΨJR,mR

A−1 :

|P µ
Nms, P

µ
A−1JRMR〉 ≡ Ψ~pN ,ms

A (~r1, . . . , ~rA) =

Â
[
Ŝ†N ′N(~r1;~r2, . . . , ~rA)u(~pN ,ms)e

i~pN ·~r1ΨJR,mR

A−1 (~r2, . . . , ~rA)
]
. (10)

As Ψg.s.
A and Ψ~pN ,ms

A are fully anti-symmetric, each term of the operator (6) will yield the

same contribution to the matrix element (3) and we can restrict ourselves to the term with

coordinate ~r1 and multiply it with A. With the above expressions for the operator and the

wave functions of the hadrons involved in the reaction, we can write for the matrix element
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of Eq. (3) in coordinate space:

M(γ,Nπ)
fi = A

∫
d~r1

∫
d~r2 . . .

∫
d~rA

[
Ψ~pN ,ms

A (~r1, ~r2, . . . , ~rA)
]†

× e−i~pπ ·~r1ŜπN(~r1;~r2, . . . , ~rA)Oµ(~r1)ε
µ(λ)ei~q·~r1Ψg.s.

A (~r1, ~r2, . . . , ~rA) . (11)

We assume that ŜN ′N and ŜπN are spin independent and that only elastic and mildly inelastic

collisions with the spectator nucleons occur. The actual nuclear transparency measurements

select events whereby the undetected final state with (A − 1) nucleons
∣∣P µ

A−1JRMR

〉
is left

with little excitation energy, which makes these assumptions very plausible. In computing

the matrix element of Eq. (11) we consider processes of the type displayed in Fig. 1. The

following spectator approximation is assumed to be valid for a struck nucleon with quantum

numbers α1 :∫
d~r1 . . .

∫
d~rA

[
φ~pN

(Pn(~r1))Ŝ†N ′N(Pn(~r1);Pn(~r2), . . . , Pn(~rA))φα2(Pn(~r2)) . . . φαA
(Pn(~rA))

]†

×e−i~pπ·~r1ŜπN(~r1;~r2, . . . , ~rA)Oµ(~r1)e
i~q·~r1φα1(Pm(~r1))φα2(Pm(~r2)) . . . φαA

(Pm(~rA))

≈ δPn(~r2)Pm(~r2) . . . δPn(~rA)Pm(~rA)

∫
d~r1 . . .

∫
d~rAφ

†
~pN

(~r1)ŜN ′N (~r1;Pn(~r2), . . . , Pn(~rA))

e−i~pπ ·~r1ŜπN(~r1;~r2, . . . , ~rA)Oµ(~r1)e
i~q·~r1φα1(Pm(~r1))|φα2(Pm(~r2))|2 . . . |φαA

(Pm(~rA))|2 ,
(12)

with Pm and Pn permutations of the set {~r1, . . . , ~rA} occurring in the anti-symmetrization of

the nucleon wave functions. Due to the presence of the delta functions, the rhs of Eq. (12)

is non-vanishing under the condition that Pm(~r1) = ~r1 and Pm(~ri) = Pn(~ri) for i = 2, .., A.

This means that both the bound wave function α1 and the ejected nucleon have the same

spatial coordinate as the operator, ~r1. Moreover, all (A − 1)! permutations of the subset

{~r2, . . . , ~rA} yield an identical rhs.

Thus, after expanding the wave functions in Eq. (11) and employing Eq. (12), we arrive

at

M(γ,Nπ)
fi ≈ A(A− 1)!

A!

∫
d~r1

∫
d~r2 . . .

∫
d~rA

[
|φα2(~r2)|2 . . . |φαA

(~rA)|2

×u†(~pN ,ms)ŜπN(~r1;~r2, . . . , ~rA)ŜN ′N(~r1;~r2, . . . , ~rA)εµ(λ)Oµ(~r1)e
−i~pm·~r1φα1(~r1)

]
. (13)

We now define the FSI factor FFSI(~r):

FFSI(~r) =

∫
d~r2 . . .

∫
d~rA|φα2(~r2)|2 . . . |φαA

(~rA)|2ŜπN(~r;~r2, . . . , ~rA)ŜN ′N(~r;~r2, . . . , ~rA) ,

(14)
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FIG. 1: (Color online) Diagram included in computing the matrix element of Eq. (11). The dashed

lines denote the FSI of the ejected pion (red) and nucleon (blue) with the spectator residual

nucleons. The diagram shown here is representative for the spectator approximation: one active

nucleon N and π are subject to soft collisions with frozen spectator nucleons which occupy the

single-particle levels α2, α3, . . . , αA and are not subject to changes in their quantum numbers.

and write

M(γ,Nπ)
fi ≈

∫
d~r1FFSI(~r1)u

†(~pN ,ms)ε
µ(λ)Oµ(~r1)e

−i~pm·~r1φα1(~r1) . (15)

In what follows, we assume that the pion production operator acts on a bound-state wave

function as a scalar (factorization assumption): Oµ(~r)φα1(~r) ≡ Cµφα1(~r). With

φD
α1

(~p) =
1

(2π)3/2

∫
d~re−i~p·~rφα1(~r)F FSI(~r) , (16)

we can write

M(γ,Nπ)
fi ≈ (2π)3/2u†(~pN ,ms)ε

µ(λ)Cµφ
D
α1

(~pm) . (17)

When studying nuclear transparencies, it is convenient to factorize the invariant matrix

element such that it becomes a convolution of a factor describing the elementary pion pho-

toproduction process and a factor modeling the combined effect of all FSI mechanisms of

the outgoing hadrons. To reach this goal we relate the γ + A → (A − 1) + N + π matrix

element in Eq. (17) to the one for for free nucleons γ +Ni → N + π

(
M(γ,Nπ)

fi free

)
ms,m′

s

= u†(~pN ,ms)ε
µ(λ)Cµu(~pm,ms′) , (18)
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with ms′ the spin of the initial nucleon. First, we consider the situation with vanishing

FSI, second the more realistic case with inclusion of a FSI phase operator. When ignoring

FSI, the wave functions for the ejected hadrons reduce to plane waves and FFSI(~r) ≡ 1,

φD
α1

(~pm) ≡ φα1(~pm). After substituting in Eq. (17) the completeness relation for Dirac

spinors: ∑

m′
s

[u(~pm,m
′
s)ū(~pm,m

′
s)− v(~pm,m

′
s)v̄(~pm,m

′
s)] = 1I4×4 , (19)

one obtains

(
M(γ,Nπ)

fi

)
RPWIA

=(2π)3/2
∑

m′
s

(
M(γ,Nπ)

fi free

)
ms,m′

s

ū(~pm,m
′
s)φα1(~pm)

− negative energy terms , (20)

where the RPWIA denotes the relativistic plane wave impulse approximation. From this

last expression it is clear that even with vanishing FSI the presence of negative-energy

components makes factorization impossible. In what follows we neglect those terms:

(
M(γ,Nπ)

fi

)
RPWIA

≈ (2π)3/2
∑

m′
s

(
M(γ,Nπ)

fi free

)
ms,m′

s

ū(~pm,m
′
s)φα1(~pm) . (21)

The contraction of the Dirac spinor ū with the bound nucleon wave function φα1 if negative

energy components are neglected is given by

ū(~pm,m
′
s)φα1(~pm) = (−i)l

√
ENi

(pm) +mNi

2mNi

αnκ(pm)χ†1
2
,m′

s
Yκm(Ωp, ~σ) , (22)

where mNi
is the free mass of the bound nucleon, ENi

(pm) =
√
m2

Ni
+ p2

m and

αnκ(pm) =
2mNi

ENi
+mNi

gnκ(pm). (23)

In this last equation gnκ is defined as

gnκ(p) = i

√
2

π

∫ ∞

0

r2dr
Gnκ(r)

r
jl(pr) , (24)

with jl(pr) the spherical Bessel function of the first kind. After squaring the matrix element

and summing over the quantum number m of the bound nucleon wave function, one can use

the following property of the spin spherical harmonics Yκm

∑
m

Yκm(Ωp, ~σ)Y†κm(Ωp, ~σ) =
(2j + 1)

8π
1I2×2 . (25)
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Finally, by using χ†1
2
,ms
χ 1

2
,m′

s
= δmsm′

s
, the free pion production process can be formally

decoupled from the typical nuclear effects:

∑

fi

|M(γ,Nπ)
fi |2 =

1

2

∑

λ,m,ms

|M(γ,Nπ)
fi |2 ≈ (2π)3 2j + 1

4π

ENi
(pm) +mNi

2mNi

|αnκ(pm)|2

× 1

4

∑

λ,ms,m′
s

|
(
M(γ,Nπ)

fi free

)
ms,m′

s

|2 . (26)

The r.h.s. of the above equation requires knowledge about the off-shell extrapolation of the

pion photoproduction amplitude. For the on-shell situation, the matrix element for the pion

photoproduction process can be linked to the cross section

1

4

∑

λ,ms,m′
s

|
(
M(γ,Nπ)

fi free

)
ms,m′

s

|2≈ 4π(s−m2
Ni

)2

mNi
mN

dσγπ

d | t | , (27)

with s = (pµ
N + pµ

π)2 and t = (qµ − pµ
π)2 the Mandelstam variables of the free process. The

off-shell extrapolation of Eq. (27) involves a correction due to the Fermi motion of the

nucleon on which the photon is absorbed. This can be done in several different ways and it

is not yet clear which of them are the most efficient and reliable. In this paper, we consider

photon energies ≥ 1.5 GeV which make off-shell corrections to s relatively small for typical

nucleon momenta. For this reason, we deem it a reasonable approximation to adopt the Eq.

(27) for sufficiently high photon energies.

After substituting Eqs. (26) and (27) in Eq. (1), the differential cross section for γ+A→
(A− 1) +N + π in the relativistic plane wave impulse approximation (RPWIA) reads

(
d5σ

dEπdΩπdΩN

)

RPWIA

≈ MA−1pπpN(s−m2
Ni

)2

4πmNi
qEA

f−1
rec

× 2j + 1

4π

(ENi
(pm) +mNi

)

2mNi

|αnκ(pm)|2 dσ
γπ

d | t | . (28)

When FSI are included, the derivation outlined earlier is no longer possible due to the

presence of FFSI(~r) in φD
α . We define a distorted momentum distribution along the lines of

Ref. [26]

ρD(~pm) =
∑
ms,m

|ū(~pm,ms)φ
D
α1

(~pm)|2 . (29)

When FSI and negative energy contributions to φD
α1

are neglected, Eq. (29) reduces to

2j+1
4π

ENi
(pm)+mNi

2mNi
|αnκ(pm)|2. Based on this analogy, we write the differential cross section

with FSI as (
d5σ

dEπdΩπdΩN

)

D

≈ MA−1pπpN(s−m2
Ni

)2

4πmNi
qEA

f−1
recρD(~pm)

dσγπ

d | t | . (30)
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B. Pion electroproduction

The four-momentum of the virtual photon γ∗ is qµ(ω, ~q) and the z-axis lies along ~q. The

incoming (scattered) electron has four-momentum pµ
e (Ee, ~pe) (pµ

e′(Ee′ , ~pe′)) and spin s (s′),

θe denotes the electron scattering angle. With these additional notations and conventions,

the differential cross section in the lab frame reads

d8σ

dΩe′dEe′dEπdΩπdΩN

=
m2

epe′

(2π)3pe

MA−1mNpπpN

2(2π)5EA

f−1
rec

∑

fi

∣∣∣M(γ∗,Nπ)
fi

∣∣∣
2

, (31)

with the recoil factor frec as in Eq. (2) and
∑

fi representing the averaging over initial

electron spin and summing over the spin states of the final electron, ejected nucleon and

residual nucleus. The invariant matrix element M(e,e′Nπ)
fi can be written as

M(e,e′Nπ)
fi = 〈P µ

π , P
µ
Nms, P

µ
A−1JRMR|jµ e

Q2
Jµ|P µ

A0+〉 , (32)

with the electron current

jµ = ū(~pe′ , s
′)γµu(~pe, s) , (33)

Q2 = −qµqµ and the hadron current Jµ. By defining an auxiliary current

aµ ≡ jµ − j0
ω
qµ (34)

and using current conservation, the following identity can readily be proved:

jµJ
µ = −aiJi = −aiδijJj = −

∑

λ=(x,y,z)

aiei(λ)ej(λ)Jj , (35)

where ~e(λ) is the unit vector along the axis λ = (x, y, z). After defining the electron density

matrix

ρλλ′ =
∑

ss′
[~e(λ) · ~a]† [~e(λ′) · ~a] (36)

and the hadronic matrix elements

wλ = 〈P µ
π , P

µ
Nms, P

µ
A−1JRMR|~e(λ) · ~J |P µ

A0+〉 , (37)

we can write for the matrix element

∑

ss′

∣∣∣M(e,e′Nπ)
fi

∣∣∣
2

=
e2

Q4

∑

λλ′
ρλλ′w

†
λwλ′ . (38)
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With the degree of transverse polarization defined as

ε =

(
1 +

2q2

Q2
tan2 θe

2

)−1

, (39)

the electron density matrix becomes [27]

ρλλ′ =
Q2

m2
e

1

1− ε




1
2
(1 + ε) 0 −1

2

√
2Q2

ω2 ε(1 + ε)

0 1
2
(1− ε) 0

−1
2

√
2Q2

ω2 ε(1 + ε) 0 Q2

ω2 ε


 . (40)

After substituting Eq. (40) in Eq. (38), one can factor out a part containing all the variables

related to the electrons in the differential cross section:

d8σ

dΩe′dEe′dEπdΩπdΩN

= Γ
d5σv

dEπdΩπdΩN

≡ ΓC
∑

|Mγ∗,Nπ
fi |2 . (41)

Here, M(γ∗,Nπ)
fi = 〈P µ

π , P
µ
Nms, P

µ
A−1JRMR|Ô|qµ, P µ

A0+〉, C = MA−1mNpπpN

4(2π)5EγEA
f−1

rec and Γ =

α
2π2

Ee′
Ee

Eγ

Q2
1

1−ε
is the electron flux factor, with the virtual photon equivalent energy Eγ =

s−M2
A

2MA
,

the fine-structure constant α, and s = (qµ + P µ
A)2 the Mandelstam variable of the virtual

photoproduction process. The cross section can be cast in the following form

d5σv

dEπdΩπdΩN

≡ d5σT

dEπdΩπdΩN

+ ε
d5σL

dEπdΩπdΩN

+ ε
d5σTT

dEπdΩπdΩN

+
√
ε(ε+ 1)

d5σTL

dEπdΩπdΩN

,

(42)

with

d5σT

dEπdΩπdΩN

=
C
2

∑
msMR

[|Jx|2 + |Jy|2
]
,

d5σL

dEπdΩπdΩN

= CQ
2

ω2

∑
msMR

|Jz|2 ,

d5σTT

dEπdΩπdΩN

=
C
2

∑
msMR

[|Jx|2 − |Jy|2
]
,

d5σTL

dEπdΩπdΩN

=
−C
2

√
2Q2

ω2

∑
msMR

[J∗xJz + J∗zJx] . (43)

As for the photoproduction case, we wish to establish a relation between the invariant

matrix element for virtual-photon pion-production on a nucleus (Mγ∗,Nπ
fi ) and on a free

nucleon (Mγ∗,Nπ
fi,free). In comparison with the real photoproduction process, the virtual photon

has an extra degree of polarization and Q2 6= 0. This does not alter the derivation presented

11



in the previous subsection and after neglecting negative energy contributions, one arrives at

Mγ∗,Nπ
fi ≈ (2π)3/2

∑
ms′

(Mγ∗,Nπ
fi,free)λ,ms,ms′ ū(~pm,ms′)φ

D
α (~pm) . (44)

The matrix element Mγ∗,Nπ
fi,free is related to the free electroproduction process by

d5σeN

dEe′dΩe′dφ∗πd | t |
= Γ′

m2
N

2(2π)2(s′ −m2
N)2

∑
|Mγ∗,Nπ

fi,free |2 , (45)

where Γ′ = α
2π2

Ee′
Ee

K
Q2

1
1−ε

is the electron flux factor, with the virtual photon equivalent energy

K =
s′−m2

N

2mN
. Further, s′ = (pµ

N + pµ
π)2 and t = (qµ − pµ

π)2 are the Mandelstam variables for

the free process. Starred variables denote center-of-mass values.

With ρD defined in Eq. (29) and by making use of Eqs. (44) and (45), we arrive at the

factorized form for the differential A(e, e′Nπ) cross section:

(
d8σ

dΩe′dEe′dEπdΩπdΩN

)

D

=
Γ

Γ′
MA−1pNpπ(s′ −m2

N)2

2mNEγEA

f−1
recρD

d5σeN

dEe′dΩe′d | t | dφ∗π
. (46)

We wish to stress that the assumptions made to arrive at this expression, are essentially

identical to those made for the real photon case discussed in the previous subsection.

C. Final-state Interactions

The Glauber approach can be justified when the wavelength of the outgoing hadron is

sufficiently small in comparison to the typical interaction length with the residual nucleons.

In the context of A(e, e′p) reactions [28] it was shown that the Glauber model represents

a realistic approach to FSI for proton kinetic energies down to about 300 MeV. This cor-

responds to proton de Broglie wavelengths of the order of 1.5 fm. For pions comparable

wavelengths are reached for kinetic energies of the order of 700 MeV.

A relativistic extension of the Glauber model, dubbed the Relativistic Multiple-Scattering

Glauber Approximation (RMSGA), was introduced in Ref. [24]. In the RMSGA, the wave

function for the ejected nucleon and pion is a convolution of a relativistic plane wave and an

Glauber eikonal phase operator which accounts for FSI mechanisms. In Glauber theory the

assumption is made that a fast moving particle interacts through elastic or mildly inelastic

collisions with frozen point scatterers in a target. Scattering angles are assumed small and

each of the point scatterers adds a phase to the wave function, resulting in the following

12



expression for the Glauber eikonal phase:

ŜiN(~r, ~r2, . . . , ~rA) =
A∏

j=2

[
1− ΓiN(~b−~bj)θ(zj − z)

]
(with i = π or N ′) . (47)

Here, ~rj(~bj, zj) are the coordinates of the residual nucleons and ~r(~b, z) specifies the interaction

point with the (virtual) photon. In Eq. (47), the z axis lies along the path of the ejected

particle i (the proton or pion), ~b is perpendicular to this path. The Heaviside step function

θ guarantees that only nucleons in the forward path of the outgoing particle contribute to

the eikonal phase.

Reflecting the diffractive nature of the nucleon-nucleon (N ′N) and pion-nucleon (πN)

collisions at intermediate energies, the profile functions ΓN ′N and ΓπN in Eq. (47) are

parametrized as

ΓiN(~b) =
σtot

iN (1− iεiN)

4πβ2
iN

exp

(
−

~b2

2β2
iN

)
(with i = π or N ′) . (48)

Here, the parameters σtot
iN (total cross section), βiN (slope parameter) and εiN (ratio of the

real to imaginary part of the scattering amplitude) depend on the momentum of the outgoing

nucleon or pion i. For i = N ′, we determined the parameters by performing a fit [24] to the

N ′N −→ N ′N databases from the Particle Data Group (PDG) [29]. For the pion, σtot
πN was

fitted to data collected by PDG [29]. The analysis of the slope parameter in Ref. [30] was

used for the βπN fits. Fits provided by SAID [31, 32] and data from PDG [29] were used in

constructing the fits for επN . The fits for σtot
iN , βiN and εiN of Figs. 2,3 and 4 are the result

of a χ2 minimization of the data against a a n-th degree polynomial (with n ≤ 10). An

alternative way of determining βπN , is via the relation

β2
πN =

(σtot
πN)2(1 + ε2πN)

16πσel
πN

, (49)

with σel
πN the elastic cross section. Fits for σel

πN to data from PDG [29] are also presented

in Fig. 2. The two sets for the βπN parameter in Fig. 3 do not produce significantly

different results for the numerical calculations presented here. We use the χ2 fit for βπN in

all calculations presented in this paper.

The Glauber operator of Eq. (47) is an A-body operator. As a consequence, it requires

integrations over all spectator nucleon coordinates in Eq. (14), which is computationally

very demanding, in particular for heavy target nuclei. In γ(∗) + A → (A − 1) + N + π
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FIG. 2: The pion lab-momentum dependence of the data [29] and adopted fits for the total and

elastic cross section for π− − p (upper panel) and π+ − p (lower panel) scattering.

calculations, a product of two Glauber phases is involved and the cylindrical symmetry of

the individual phases is lost. A Romberg algorithm is used to perform the integrations over

the spatial coordinates in Eq. (14).

For nucleons with a kinetic energy lower than about 300 MeV, the approximations under-

lying the Glauber formalism are no longer applicable, and an alternative method to model

FSI is required. Under those circumstances our framework provides the flexibility to adopt

the Relativistic Optical Model Eikonal Approximation (ROMEA) [33]. In the ROMEA ap-

proach, the wave function of a nucleon with energy E =
√
p2

N +m2
N after scattering in a
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FIG. 3: The pion lab-momentum dependence of the data [30] and fits for the β2
pπ parameter for

π− − p (upper panel) and π+ − p (lower panel) scattering. Full curves are a χ2 fit to the data,

whereas the dashed curves result from Eq. (49).

scalar (Vs(r)) and vector (Vv(r)) spherical potential has the following form:

ψ
(+)
~pN ,ms

(~r) =

√
E +mn

2mN


 1

1
E+mN+Vs(r)−Vv(r)

~σ · ~̂p


 ei~pN ·~reiŜN′N (~r)χ 1

2
ms
, (50)

with the eikonal phase determined by

iŜN ′N(~b, z) = −imN

K

∫ z

−∞
dz′

[
Vc(~b, z

′) + Vso(~b, z
′)

[
~σ · (~b× ~K)− iKz′

]]
. (51)

In this last equation, ~K = 1
2
(~ki + ~kf ) is the average of the initial and final momentum of
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FIG. 4: The pion lab-momentum dependence of the ratio of the real to imaginary part of the π−p

(upper panel) and π+p (lower panel) amplitudes. The diamonds represent an analysis of the data

by the Georges Washington University group [31, 32], whilst the solid circles are from PDG [29].

The solid line is the fit to the data which is used in the numerical calculations.

the scattering particle. In the small angle approximation, ~K ≈ ~pN and points along the

z-axis. The central and spin-orbit potentials Vc and Vso are functions of Vs and Vv and their

derivatives [33].

Additional approximations were used in the implementation of optical-potential FSI in

this ROMEA model. The dynamical enhancement of the lower components of the scattering

wave function (50) is ignored as at low momenta the lower components are small compared
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to the upper components due to ~̂p and at higher momenta (Vs − Vv) is small in comparison

to (E +mN). The operator ~̂p was also substituted by the asymptotic value ~pN . Finally, as

collisions were assumed spin-independent in (12), the spin-orbit potential Vso in Eq. (51) is

neglected. This yields the following phase factor entering in Eq. (14):

ŜROMEA
N ′N (~r) = e

−i
mN
pN

R+∞
zN

dzVc(~bpN
,z)
. (52)

In contrast to the Glauber eikonal phase, the optical potential eikonal phase of Eq. (52)

depends solely on the coordinate ~r which defines the interaction point. As a consequence,

it can be taken out of all the integrations in Eq. (14) and the cylindrical symmetry of the

pion Glauber eikonal factor is retained, hereby considerably reducing the cost of computing

the total FSI factor FFSI. For the numerical evaluation of the ROMEA phase factor, we

made use of the optical potential of van Oers et al. [34] for 4He and the global (S − V )

parametrization of Cooper et al. [35] for heavier nuclei.

D. Color transparency and short-range correlations

We implement color transparency effects in the usual fashion by replacing the total cross

sections σtot
iN in the profile functions of Eq. (48) with effective ones [36]. The latter induce

some reduced pion-nucleon and nucleon-nucleon interaction over a typical length scale lh

corresponding with the hadron formation length (i = π or N ′)

σeff
iN

σtot
iN

=

{[Z
lh

+
< n2k2

t >

H
(

1− Z
lh

)]
θ(lh −Z) + θ(Z − lh)

}
. (53)

Here, n is the number of elementary fields (2 for the pion, 3 for the nucleon), kt =

0.350 GeV/c is the average transverse momentum of a quark inside a hadron, Z is the

distance from the interaction point and lh ' 2p/∆M2 is the hadronic expansion length,

with p the momentum of the final hadron and ∆M2 the mass squared difference between

the intermediate prehadron and the final hadron state. We adopt the values ∆M2 = 1 GeV2

for the proton and ∆M2 = 0.7 GeV2 for the pion. H is the hard scale parameter that governs

the CT effect. It equals the momentum transfer t = (qµ− pµ
π)2 (pion CT) or u = (qµ− pµ

N)2

(nucleon CT) for pion photoproduction and Q2 for pion electroproduction. Fig. 5 illustrates

the predicted difference of the CT effect on the pion-nucleon and nucleon-nucleon effective

interaction. Reflecting its mesonic nature, the pion has a longer formation length and during
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its formation its interaction cross section with the residual nucleons is more strongly reduced

than for a nucleon.

Z [fm]0 2

to
t

iNσ/
ef

f
iNσ

0.5

1

FIG. 5: Comparison of the CT effect on the total effective cross section σeff
iN for nucleon-nucleon

(full) and pion-nucleon (dashed) interactions. We consider the situation whereby the ejectile pos-

sesses a lab-momentum of 2.5 GeV/c. For the hard-scale parameter we adopt H = 1.8 (GeV/c)2.

We now proceed with introducing a method which allows us to implement the effect of

SRC in the relativistic Glauber calculations. The proposed method adopts the thickness

approximation as a starting point. In the thickness approximation, the density |φαi
(~ri)|2 of

the individual nucleons in Eq. (14) is replaced by an averaged density ρ
[1]
A (~r) defined as

ρ
[1]
A (~r) = A

∫
d~r2 . . .

∫
d~rA (Ψg.s.

A (~r, ~r2, . . . , ~rA))† Ψg.s.
A (~r, ~r2, . . . , ~rA) . (54)

In terms of ρ
[1]
A (~r) the FSI factor of Eq. (14) can be approximated by

F thick
FSI (~r) =

1

AA−1

∫
d~r2 . . .

∫
d~rAρ

[1]
A (~r2)ρ

[1]
A (~r3) . . . ρ

[1]
A (~rA)ŜπN(~r;~r2, . . . , ~rA)ŜN ′N(~r;~r2, . . . , ~rA)

(55)

In combination with the operators of Eq. (47) the expression can be further simplified to

F thick
FSI (~r) =

(∫
d~r2

ρ
[1]
A (~r2)

A

[
1− ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2 − zN ′)

]

[
1− Γπp(~bπ −~bπ2)θ(zπ2 − zπ)

])Z− τz+1
2

×
(∫

d~r3
ρ

[1]
A (~r3)

A

[
1− ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3 − zN ′)

]

[
1− Γπn(~bπ −~bπ3)θ(zπ3 − zπ)

])N+ τz−1
2

, (56)
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where τz is the isospin (1 for protons and -1 for neutrons) of the nucleon on which the

initial absorption took place. The zN ′ (zπ) axis lies along the ejected nucleon (pion). The

above expression is derived within the context of the IPM. It is clear that the nucleus has

a fluid nature and that the IPM can only be considered as a first-order approximation. In

computing the FSI effects by means of the Eq. (56) one fails to give proper attention to

one important piece of information: namely that one considers the density distribution of

nucleons given that there is one present at the photo-interaction point ~r.

The two-body density ρ
[2]
A (~r1, ~r2) is related to the probability to find a nucleon at position

~r2 given that there is one at a position ~r1. We adopt the following normalization convention

for ρ
[2]
A ∫

d~r1

∫
d~r2ρ

[2]
A (~r1, ~r2) = A(A− 1) . (57)

In the IPM on has
(
ρ

[2]
A (~r1, ~r2)

)
IPM

≡ A−1
A
ρ

[1]
A (~r1)ρ

[1]
A (~r2). The nucleus has a granular struc-

ture as the nucleons have a finite size. This gives rise to strong nucleon-nucleon repulsions

at short internucleon distances which reflect themselves in short-range correlations (SRC)

at the nuclear scale. One can correct
(
ρ

[2]
A (~r1, ~r2)

)
for the presence of the SRC by adopting

the following functional form [37]

ρ
[2]
A (~r1, ~r2) ≡ γ(~r1)

(
ρ

[2]
A (~r1, ~r2)

)
IPM

γ(~r2)g(r12) =
A− 1

A
γ(~r1)ρ

[1]
A (~r1)ρ

[1]
A (~r2)γ(~r2)g(r12) ,

(58)

with g(r12) the so-called Jastrow correlation function and γ(~r) a function which imposes the

normalization condition of Eq. (57) on ρ
[2]
A (~r1, ~r2). The function γ(~r) is a solution to the

following integral equation

γ(~r1)

∫
d~r2ρ

[1]
A (~r2)g(r12)γ(~r2) = A , (59)

which can be solved numerically. The Glauber phase factor of Eq. (56) can now be corrected

for SRC through the following substitution

ρ
[1]
A (~r2) → A

A− 1

ρ
[2]
A (~r2, ~r)

ρ
[1]
A (~r)

= γ(~r2)ρ
[1]
A (~r2)γ(~r)g(|~r2 − ~r|) ≡ ρeff

A (~r2, ~r) , (60)

whereby ρ
[2]
A (~r2, ~r) adopts the expression (58). These manipulations amount to the following
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final expression for the Glauber FSI factor including SRC:

FSRC
FSI (~r) =

(∫
d~r2

γ(~r2)ρ
[1]
A (~r2)γ(~r)g(|~r2 − ~r|)

A

[
1− ΓN ′p(~bN ′ −~bN ′2)θ(zN ′2 − zN ′)

]

×
[
1− Γπp(~bπ −~bπ2)θ(zπ2 − zπ)

])Z− τz+1
2

×
(∫

d~r3
γ(~r3)ρ

[1]
A (~r3)γ(~r)g(|~r3 − ~r|)

A

[
1− ΓN ′n(~bN ′ −~bN ′3)θ(zN ′3 − zN ′)

]

×
[
1− Γπn(~bπ −~bπ3)θ(zπ3 − zπ)

])N+ τz−1
2

. (61)

The effective density of Eq. (60) accounts for the fact that the motion of each nucleon does

depend on the presence of the other ones. In Fig. 6 we display the effective nuclear density

as it would be observed by a nucleon or a pion created after photoabsorption on a nucleon

at the center of the nucleus. The figure shows the density for Fe as computed in the IPM

(ρ
[1]
A (x, y, z ≡ 0)) and with the expression based on the substitution of Eq. (60)

γ(x, y, z ≡ 0)ρ
[1]
A (x, y, z ≡ 0)γ(x ≡ 0, y ≡ 0, z ≡ 0)g(|~r|) .

In Fig. 6 and all forthcoming numerical calculations we use a correlation function g(|~r|) from

Ref. [38]. It is characterized by a (Gaussian) hard core of about 0.8 fm and a second bump

which extends to internucleon distances r of about 2 fm and reaches its maximum for r12 ≈
1.3 fm. This correlation function provided a fair description of the SRC contributions to

12C(e, e′pp) [39] and 16O(e, e′pp) [40]. It is clear that the SRC lead to a local reduction - with

size of the nucleon radius - of the density around the nucleon struck by the (virtual) photon.

In order to preserve the proper normalization, this reduction amounts to some enhanced

density at distances of about twice the nucleon radius. With regard to the intranuclear

attenuation, the reduction of the density in the proximity of the struck nucleon will result in

some enhanced transparency close to the photo-interaction point ~r. The enhanced density

at positions of about twice the nucleon radius from the struck nucleon, can be expected to

have the opposite effect.
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FIG. 6: (Color online) The effective nuclear density ρeff
A (~r2, ~r) at z2 = 0 for He (left) and Fe (right)

before (upper) and after (lower panel) the inclusion of SRC effects. The effective nuclear densities

here refer to the situation whereby the (virtual) photon is absorbed at the origin (x = 0, y = 0, z =

0).

III. NUMERICAL RESULTS

A. The FSI factor

In this subsection we present a selected number of results of the numerical calculations

of the RMSGA FSI factor of Eq. (14). We consider the 12C(γ, pπ−) reaction in a reference

frame with the z axis along the momentum ~pN of the ejected nucleon and the y axis along

~pπ × ~pN (with ~pπ in the lower hemisphere). In what follows, θNπ stands for the angle of
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the pion relative to the nucleon. It has a negative value in all calculations considered in

this section. The coordinate ~r denotes the interaction point with the external photon. We

present the FSI factor versus the spherical coordinates in this frame.

In Fig. 7, we present the calculated norm and phase of the FSI factor in the scattering

plane (φ = 0) for pN ≈ 2.6 GeV and pπ ≈ 2.3 GeV, which are conditions for which Jefferson

Lab collected data. We present the FSI factor for the proton and the pion separately as well

as the combined effect when the two are detected in coincidence.

When looking at the θ dependence, it becomes clear from Fig. 7 that the norm is smallest

in the direction opposite the momentum of the particle (being 180o for the nucleon and

180o + θNπ for the pion). For these directions and large r, the nucleon or pion is created

close to the surface of the nucleus on the opposite side of its asymptotic direction and has

to travel through a thick layer of nuclear medium before it reaches a free status. As for the

r dependence, we see for the nucleon a reduction of the FSI effects for rising r at angles in

the neighborhood of θ = 0o, respectively an increment for rising r at θ = 180o. This is again

due to the fact that the outgoing nucleon traverses less, respectively more nuclear matter on

its way out of the nucleus. The same observations apply for the pion, albeit at the angles

θNπ and 180o + θNπ. The total FSI factor combines the intranuclear attenuation effects on

the nucleon and pion. Hence, the norm shows the largest reduction at θ around 180o and

180o + θNπ. The phase of the FSI factor exhibits similar behavior, with the largest phase

shifts occurring at the discussed angles.

Fig. 8 teaches us a couple things about the φ dependence of the FSI factor. As the

outgoing nucleon lies along the z axis there is no dependence on the azimuthal angle because

of the cylindrical symmetry. Again, we can see that the absorption is largest when large

amounts of nuclear matter need to be traversed (i.e. large θ). Looking at the pion we see the

largest attenuation occurs in the upper hemisphere (cosφ ≥ 0) as a pion that is created in

this region has to traverse the inner core of the nucleus. The combined effect of the pion and

nucleon contributions is contained in the bottom panel. As the reaction takes place in the xz

plane, the total FSI factor retains the following symmetry: FFSI(r, θ, φ) = FFSI(r, θ, 2π−φ).
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FIG. 7: (Color online) Radial and polar-angle dependence of the norm (left) and phase (right)

of the FSI factor FFSI in the scattering plane (φ = 0o) for the 12C(γ, pπ−) reaction from the

1s1/2 level. For the upper (middle) panels, solely the FSI effects on the ejected proton (pion) are

considered. The lower panels include the net effect of both the pion and nucleon FSI effect. The

results are obtained for pN = 2638 MeV, pπ = 2291 MeV, θNπ = −65.19o.
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FIG. 8: (Color online) Polar- and azimuthal-angle dependence of the norm of the FSI factor FFSI

at a distance r = 3 fm from the center of the nucleus for the 12C(γ, pπ−) reaction from the 1s1/2

level. Separate contributions from the nucleon (upper panel) and the pion (middle panel), as well

as their combined effect (bottom panel) are shown. Kinematics as in Fig. 7.
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B. Pion photoproduction

The experiment E94-104 at Jefferson Lab extracted nuclear transparencies for γ+4 He →
p+π−+3 He. The measurements were performed for photon energies 1.6 ≤ q ≤ 4.2 GeV and

for θc.m. = 70o and 90o, with θc.m. the center-of-mass angle between the photon and pion. In

total, the nuclear transparencies were measured for eight kinematical settings. In a proposal

for a follow-up experiment, seven additional kinematics are suggested for measurements

at higher photon energies and θc.m. = 90o [41]. We have performed calculations for the

completed and planned experiments. Table I provides a list of the kinematics.

We aim at performing calculations which match the kinematic conditions of the experi-

ment as closely as possible. We use the following definition for the transparency:

T =

∑
α

∫
dqY (q)

∫
d~pm

(
d5σ

dEπidΩπidΩNi

)
RMSGA∑

α

∫
dqY (q)

∫
d~pm

(
d5σ

dEπidΩπidΩNi

)
RPWIA

. (62)

The integrations
∫
dq

∫
d~pm in Eq. (62) were evaluated with a random integration algorithm.

To this end, random events within the photon beam energy range, detector acceptances and

applied cuts for each data point were generated for the calculation of the transparency until

convergence of the order of 5% was reached. Typically, this involves about a thousand events

for each data point. In Eq. (62),
∑

α extends over all occupied single-particle states in the

target nucleus. All cross sections are computed in the lab frame. Y (q) provides the weight

factor for the generated events. It includes the yield of the reconstructed experimental

photon beam spectrum [14] for the photon energy of the generated event. We assume that

the elementary γ + n → π− + p cross section dσγπ

d|t| in Eqs. (28) and (30) remains constant

over the kinematical ranges
∫
dq

∫
d~pm which define a particular data point. With this

assumption the cross section dσγπ

d|t| cancels out of the ratio (62). For all kinematic conditions

of Table I, the pion and nucleon momenta are sufficiently high for the RMSGA method to

be a valid approach for describing the FSI mechanism.

For a discussion of the computed results compared to the experimental data and a semi-

classical model we refer the reader to Ref. [17]. In Fig. 9 the separated transparencies for

the outgoing proton and pion are displayed next to the full result. It is clear from this figure

that the rise of the transparency at low |t| can be attributed to the proton contribution.

This rise can be attributed to the local minimum in the total nucleon-nucleon cross section

for nucleon momenta of about 1 GeV
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q θc.m. pN θN pπ θπ

1648 70o 989 47.39o 1238 −36.02o

1648 90o 1277 37.37o 1015 −47.73o

2486 70o 1322 44.37o 1794 −31.02o

2486 90o 1740 34.45o 1438 −43.18o

3324 70o 1642 41.74o 2363 −27.56o

3324 90o 2195 32.01o 1866 −38.57o

4157 70o 1949 39.51o 2929 −25.05o

4157 90o 2638 30.01o 2291 −35.18o

4327 70o 2011 39.1o 3044 −24.6o

4327 90o 2727 29.6o 2377 −34.6o

5160 70o 2307 37.3o 3606 −22.8o

5160 90o 3161 28.0o 2797 −32.1o

6059 70o 2622 35.6o 4211 −21.2o

6059 90o 3625 26.6o 3250 −29.9o

7025 70o 2956 33.9o 4861 −19.8o

7025 90o 4120 25.2o 3735 −28.0o

8057 70o 3309 32.4o 5555 −18.6o

8057 90o 4646 24.0o 4253 −26.3o

9156 70o 3683 31.0o 6294 −17.6o

9156 90o 5204 22.8o 4805 −24.8o

10322 70o 4077 29.7o 7077 −16.6o

10322 90o 5794 21.8o 5389 −23.5o

TABLE I: Central values for the photon energy (MeV), proton momentum pN (MeV), proton angle

θN , pion momentum pπ (MeV) and pion angle θπ for θc.m. = 70o, 90o. Angles are measured relative

to the incoming photon momentum.
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Fig. 9 also shows that the 4He nucleus is more transparent for pion emission than for

proton emission. This can be partially attributed to the lower pion total cross sections. As

pointed out in Fig. 5 the larger formation length, and corresponding bigger reduction of the

effective cross section make that the CT effect is larger for pions than for protons. In Fig. 10

the computed increase in the nuclear transparency caused by CT and SRC mechanisms

is shown as a function of |t|. One observes that SRC mechanisms increase the nuclear

transparency by about 5%. As there is no direct dependence on the hard scale, the increase

is almost independent of |t|. The CT phenomenon, on the other hand, shows a linear rise

from almost 0 to over 20% at the largest values of |t|. For −t ≤ 2.5 GeV2 the predicted

effect of SRC is larger than the increase induced by the CT mechanism. The SRC decrease

the slope in the −t-dependence of the CT phenomenon. Indeed, the SRC induces holes in

the nuclear density in the direct neighborhood of the interaction point (see Fig. 6) where

the CT effects are largest. At high |t| the short-range correlations have a modest impact on

the magnitude of the CT effects. Our investigations show that by studying the hard scale

dependence of the transparency the CT-related mechanisms can be clearly separated from

the SRC ones.

In the search of phenomena like CT in transparency studies, it is of the utmost importance

to possess robust and advanced calculations based on concepts from traditional nuclear

physics. Thereby, one of the major sources of uncertainty stem from the description of

FSI mechanisms. In our eikonal model, we can either use optical potentials (ROMEA) or

a Glauber framework (RMSGA). In kinematic regions of moderate hadron momenta both

approaches can be used [28]. As they adopt very different underlying assumptions, we

consider a comparison between the predictions of the two approaches as a profound test of

the trustworthiness of either approach. We computed the transparency of the 4He(γ, pπ−)

reaction for kinematics at θc.m. = 70o and 90o with ejected proton momenta ranging from 500

MeV/c to 1 GeV/c. As can be appreciated from Fig. 11, both descriptions yield a similar

shape, but the RMSGA calculations are consistently larger by about 5%. At higher nucleon

momenta, however, the difference between the predictions for the transparencies in the two

approaches shrinks to a few percent. The estimated model dependence in the computed

transparencies is of the same order as the predicted role of SRC mechanisms. From these

observations, it is clear that pion and nuclear transparencies are not the optimum observables

to study SRC mechanisms in nuclei. Indeed they bring about a relatively modest overall
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renormalization of about 5 %. Unlike the CT effects for example, their role does not grow

with an increasing hard scale, neither is there any sizeable A-dependence in the SRC effects
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FIG. 9: Contributions of the pion (dashed-dotted) and nucleon (dashed) to the total nuclear

transparency (full) extracted from 4He(γ, pπ−) versus | t | at θc.m. = 70o. All calculations include

CT.
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FIG. 10: The | t |-dependence of the relative increase of the nuclear transparency due to SRC

and CT effects. We consider the 4He(γ, pπ−) reaction at θc.m. = 70o (left panel) and 90o (right

panel) and kinematic conditions from Table I. The baseline result is the RMSGA calculation. The

solid (dashed) curve includes the effect of CT (SRC). The dot-dashed line is the combined effect

of CT+SRC.

C. Pion electroproduction

The E01-107 collaboration at Jefferson Lab has measured the nuclear transparency for

the pion electroproduction process on H, 12C, 27Al, 64Cu and 197Au. Measurements were
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FIG. 11: Comparison between the RMSGA (squares) and ROMEA (circles) description of the

nucleon transparency of the 4He(γ, pπ−) reaction for kinematics at θc.m. = 70o (left panel) and 90o

(right panel). Neither CT nor SRC effects were included in the calculations.

done for the kinematics listed in Table II. In all the measurements the pion is detected in a

relatively narrow cone about the momentum transfer. We have performed calculations for

all target nuclei. The transparency is defined as

T =

∑
α

∫
dωY (ω)

∫
∆3pm

d~pm

(
d8σ

dΩe′dEe′dEπdΩπdΩN

)
RMSGA∑

α

∫
dωY (ω)

∫
∆3pm

d~pm

(
d8σ

dΩe′dEe′dEπdΩπdΩN

)
RPWIA

. (63)

The integration over ω takes into account the spread in energy of the virtual photon in

the experiment and weighs each point with the reconstructed yield Y (ω) [42]. The quantity

∆3pm specifies the phase-space of the missing momentum and is determined by the condition

| pm |≤ 300 MeV/c and the experimental cuts and detector acceptances. An experimental

cut of 100 MeV was placed on the missing mass of the final state. Accordingly, the undetected

final neutron is an extremely slow one. The experimentally determined transparency was

formed by dividing the measured yield by a Monte Carlo equivalent yield for the targets with

nucleon number A and comparing it to the ratio of the yields from the 1H target [15]. As the

Monte Carlo simulation does not include the attenuation mechanisms on the detected pions,

the measured transparency is a measure of these. We compute these intranuclear attenuation

effects on the ejected pions in the RMSGA model. Thereby, we use a parametrization

provided by the E01-107 collaboration for the free electroproduction in Eq. (46) [42, 43].

Fig. 12 presents the results from our transparency calculations for the electroproduction

reaction. The RMSGA calculations show a modest increase over the Q2 range. This behavior
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Q2 Ee θe Ee′ pπ θπ

1.10 4021 27.76o 1190 2793 10.58o

2.15 5012 28.85o 1730 3187 13.44o

3.00 5012 37.77o 1430 3418 12.74o

3.91 5767 40.38o 1423 4077 11.53o

4.69 5767 52.67o 1034 4412 9.09o

TABLE II: Central values of Q2 (GeV2), incoming electron energy Ee(MeV), electron scattering

angle θe (degrees), scattered electron energy Ee′ (MeV), ejected pion momentum pπ (MeV) and

ejected pion angle (degrees) for the kinematics of the Jefferson Laboratory experiment E01-107.

Angles are measured relative to the incoming electron beam.

finds a simple explanation in the pπ dependence of the σtot
π+p of Fig. 2. The results contained

in Fig. 12 cover a range in pion momenta given by 2.8 ≤ pπ ≤ 4.4 GeV. In this range, σtot
π+p

displays a soft decrease, which reflects itself in a soft increase of the nuclear transparency.

The RMSGA+CT transparencies are again about 5% larger than the RMSGA ones. The

RMSGA+CT shows a strong Q2 dependence with CT-related enhancements up to 20% at

the highest energies. The evolution of the A-dependence of the transparency is shown in

Fig. 13. One observes that the addition of CT to the calculation adds more curvature and

that this increases with higher Q2. Finally, we compare our model calculations with the

results from the semi-classical model of Ref. [16]. The transparency is plotted as function

of ~k = ~pπ − ~q. As in the photoproduction calculations [17], our results again turn out to be

higher by a few percent.

IV. CONCLUSION

We have outlined a relativistic framework to compute nuclear transparencies in exclu-

sive A(γ,Nπ) and A(e, e′Nπ) reactions. For the bound states, the model uses relativistic

mean-field wave functions. At sufficiently high nucleon and pion energies, the intranu-

clear attenuation on the ejected particles can be computed with a relativistic version of the

Glauber model. At lower ejectile energies, the framework offers the flexibility to use opti-

cal potentials. For nucleon momenta where both approaches can be applied, the Glauber
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FIG. 12: (Color online) The Q2-dependence of the nuclear transparency for the A(e, e′π+) process in

12C, 27Al, 63Cu and 197Au. The black and green curves are RMSGA and RMSGA+CT calculations

respectively. The blue and red line are RMSGA+SRC and RMSGA+SRC+CT results.

and optical-potential based calculations predict nucleon transparencies in 4He which follow

similar trends. The differences in the magnitude of the transparency is smaller than 5%

and shrinks with nucleon momentum. Our RMSGA predictions for the pion transparencies

are in reasonable agreement with the semi-classical results of Larson, Miller and Strikman.

Both models predict similar trends, with the RMSGA predictions being systematically ≈ 5%

higher. This provides support that the baseline nuclear-physics transparencies can be com-

puted in a rather model-independent fashion. Extension of our relativistic and quantum

mechanical photoproduction calculations up to energies accessible in the JLab 12 GeV up-

grade show an increase of the transparency up to 20% at the highest energies due to color

transparency. Transparencies are also enhanced through the inclusion of SRC effects in the

calculations. This yields an increase of about 5%, independent of the hard scale. Accordingly
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FIG. 13: (Color online) A-dependence of the transparency for the A(e, e′π+) process at Q2 =

1.1GeV2 (black) and Q2 = 4.69GeV2 (red). The solid curves denote RMSGA+SRC results. The

dashed lines are RMSGA+CT+SRC calculations.
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FIG. 14: Nuclear transparency results for 12C(e, e′π+) versus the z component of ~k = ~pπ − ~q for

kinematics corresponding to data points of the JLab experiment of Ref. [15]. The circles are

RMSGA+CT predictions, whereas the stars are from the semi-classical calculations of Ref. [16].

the SRC and CT mechanisms can be clearly separated.
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