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A relativistic model for neutrino pion production
from nuclei in the resonance region
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Abstract.
We present a relativistic model for electroweak pion production from nuclei, focusing on the∆

and the second resonance region. Bound states are derived inthe Hartree approximation to the
σ − ω Walecka model. Final-state interactions of the outgoing pion and nucleon are described
in a factorized way by means of a relativistic extension of the Glauber model. Our formalism
allows a detailed study of neutrino pion production throughQ2, W , energy, angle and out-of-plane
distributions.
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Lately, new cross-section measurements presented by the MiniBooNE and K2K
collaborations have put the spotlights on few-GeV neutrino-scattering physics. As
nuclei serve as neutrino detectors in these experiments, there is a great deal of interest
in modeling neutrino-nucleus interactions in the regionW < 2 GeV, where the vast part
of the strength is due to quasi-elastic events and resonant one-pion production. The
need for a realistic description of nuclear effects becomeseven more evident in the light
of future neutrino-scattering experiments like Minerνa, who aim at a precise study of
various exclusive channels with the use of high-intensity beams and improved particle
identification.
In earlier work, neutrino-induced one-nucleon knockout calculations have been per-
formed within the relativistic multiple-scattering Glauber approximation [1]. Here, we
proceed along the same lines to develop a framework for resonant one-pion production
calculations. The presented formalism focuses on an intermediate∆ state, but can be
straightforwardly extended to the second-resonance region.

For a nucleus with mass numberA, the process under consideration can be schematically
represented as

ν +A
∆→ l +N +π +(A−1), (1)

with l, N andπ representing the outgoing charged lepton, nucleon and pionrespectively.
In the laboratory system, the eightfold cross section for the process (1) is given by

d8σ
dEldΩldEπdΩπdΩN

=
ml|~kl|
(2π)3

MNMA−1|~kπ ||~kN|
2(2π)5|EA−1+EN +EN~kN · (~kπ −~q)/|~kN|2|

∑i f |M f i|2,
(2)
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using self-explanatory notations for the outgoing particles’ kinematics.
All information about the reaction dynamics is contained inthe matrix element

M f i = i
GF cosθc√

2
u(kN,sN)Γµ

∆πN(kπ ,k∆)S∆,µν(k∆)Γνρ
WN∆(k∆,q)SW,ρσ (q)Jσ

l uα,m(ki),

(3)
whereGF andθc stand for the Fermi constant and the Cabibbo mixing angle. In(3), we
adopted the impulse approximation. The hit nucleon is represented by the bound-state
spinoruα,m(ki), calculated as the Fourier transform of the bound-state wave functions

Ψα,m(~r) =

(

iG(r)
r Y+κ,m(~̂r)

−F(r)
r Y−κ,m(~̂r)

)

. (4)

The radial wave functions in (4) are determined in the Hartree approximation to the
σ − ω Walecka model [2]. Further,Jl represents the weak lepton current andSW is
the weak boson propagator. To describe the∆-production vertexΓW N∆, we turn to the
phenomenological form-factor parameterization discussed in [3]. The adopted form
factors are constrained by theoretical principles like CVCand PCAC and, in the case
of the vector form factors, by available electron-scattering data. For the∆ propagator
we take the Rarita-Schwinger propagator for a spin-3/2 particle. In this regard, medium
modifications of the resonance are accounted for by implementing a shift to the mass
and width of the∆. We hereby use a density-dependent parameterization suggested in
[4], and based on a calculation of the∆ self energy in the medium. Finally, the decay of
the∆ particle is described by the interactionΓ∆πN , andu(kN,sN) represents the outgoing
nucleon’s spinor.
Next to binding effects and medium-modified∆ properties, the final-state interactions
(FSI) of the escaping nucleon and pion can have a considerable effect on the calcu-
lated cross-section strength. To compute the influence of FSI, we adopt a relativistic
multiple-scattering Glauber approximation (RMSGA) [5]. Within this RMSGA model,
one computes the attenuation offast nucleons and pions due to elastic and mildly
inelastic collisions with the remainingspectator nucleons when they travel through the
nucleus. The Glauber approach allows to calculate the probability that a high-energy
nucleon/pion will escape from a finite nucleus [6, 7], a quantity often referred to as the
nuclear transparency. In Ref. [1], it was shown that plane-wave(ν,ν ′N) cross sections
corrected with this nuclear transparency factor provide anexcellent alternative for full,
unfactorized distorted-wave calculations, provided thatinclusive cross sections are
considered.

In short, we have presented a fully relativistic formalism for neutrino one-pion
production on nuclei in the resonance region. This framework opens up a wide range
of possibilities: we can do calculations for different nuclei and resonances. More-
over, predictions can be made for various observables, including not onlyQ2 and
W distributions, but also energy and angular distributions for the outgoing lepton or
hadrons (Fig. 1). As an accurate description of nuclear effects will be of notable inter-
est to future neutrino-scattering experiments, we accountfor nuclear binding effects,
medium-modified resonance properties and FSI effects [8].
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FIGURE 1. Two-fold distributions for the processνµ + p → µ + ∆++ on a carbon nucleus forEν =
1200 MeV.
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