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Abstract

A relativistic framework for computing the nuclear transparency extracted from A(p,2p) scattering processes is presented. The model accounts
for the initial- and final-state interactions (IFSI) within the relativistic multiple-scattering Glauber approximation (RMSGA). For the description
of color transparency, two existing models are used. The nuclear filtering mechanism is implemented as a possible explanation for the oscillatory
energy dependence of the transparency. Results are presented for the target nuclei 7Li, 12C, 27Al, and 63Cu. An approximated, computationally
less intensive version of the RMSGA framework is found to be sufficiently accurate for the calculation of the nuclear transparency. After including
the nuclear filtering and color transparency mechanisms, our calculations are in acceptable agreement with the data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The transition region between nucleon–meson (hadronic)
and quark–gluon (partonic) degrees of freedom is a topic of
longstanding interest in nuclear physics. A promising observ-
able to map this transition is the transparency of the nuclear
medium to the propagation of hadrons. In A(p,2p) experi-
ments, the nuclear transparency is defined as the ratio of the
cross section per nucleon to the hydrogen one. Accordingly, the
nuclear transparency is a measure for the attenuation effects of
the spectator nucleons on the impinging and outgoing protons.

In the conventional Glauber picture [1], the nuclear trans-
parency extracted from A(p,2p) reactions is predicted to be
rather constant for incoming momentum larger than a few
GeV/c. The color transparency (CT) phenomenon suggests an
anomalously large transmission probability of protons through
nuclei [2,3] and leads to a nuclear transparency that increases
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with incoming momentum. The experimental A(p,2p) data
[4–6] suggest a CT-like increase in the transparency for im-
pinging proton momenta between 5 and 10 GeV/c. For higher
momenta the nuclear transparency falls back to the Glauber
level. This oscillatory energy dependence is not unique to the
A(p,2p) nuclear transparency: it has been observed or hinted
at in pp elastic scattering [7], elastic πp fixed-angle scattering
[8,9], pion photoproduction [9,10], and deuteron photodisinte-
gration [11,12].

One possible interpretation of this energy dependence of
the A(p,2p) transparency is provided by the presence of two
terms in the free pp scattering amplitude [13,14]. Ralston and
Pire [13] suggested a combination of the following two com-
ponents. First, the quark-counting component which follows
the dimensional scaling law [15] and represents a small ob-
ject (a point-like configuration, PLC). Second, the Landshoff
component [16] which is associated with normal-sized configu-
rations. The interference between these two amplitudes induces
the oscillation of the pp cross section about the scaling be-
havior. Inside the nuclear medium, the Landshoff component
will be suppressed because of the strong interactions with the
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spectator nucleons, while the quark-counting component will
escape the nucleus with relatively small attenuation due to CT.
This phenomenon is called “nuclear filtering” (NF) [17]: the nu-
cleus filters away the normal-sized components in the hadron
wave functions. Accordingly, the nucleus plays an active role
in selecting small-sized components. The NF model is able
to reproduce qualitatively the observed bump in the A(p,2p)

transparency.
Recently, a relativistic and cross-section factorized frame-

work for A(p,2p) reactions has been proposed [18]. In this
Letter, this formalism is extended to incorporate the Ralston–
Pire model for the pp scattering amplitude and the concepts of
CT and NF. For the description of the initial- and final-state in-
teractions (IFSI) of the impinging and two outgoing protons, we
adopt the relativistic multiple-scattering Glauber approxima-
tion (RMSGA) [18]. This relativistic extension of the Glauber
model, which was originally developed to describe A(e, e′p)

observables [19,20], models the IFSI as consecutive cumula-
tive scatterings with the individual spectator nucleons in the
nucleus. To compute the effects of CT, we consider the quan-
tum diffusion model of Ref. [21] and an alternative treatment
presented in Ref. [22]. The comparison between the two CT
models is made in a consistent way.

This Letter is organized as follows. In Section 2, the
RMSGA A(p,2p) formalism of Ref. [18] is extended to take
into account both the quark-counting and the Landshoff con-
tribution to the hard pp scattering amplitude. A numerically
convenient approximate form of the RMSGA framework is in-
troduced. Further, we describe two different methods to deal
with CT, thereby indicating the similarities and differences.
Section 3 presents the nuclear transparency results for the target
nuclei 7Li, 12C, 27Al, and 63Cu. The effect of IFSI, CT and NF
is discussed. Furthermore, the accuracy of the approximated
RMSGA approach is investigated and the two CT treatments
are compared. Finally, Section 4 summarizes our findings and
states our conclusions.

2. Formalism

In the Ralston–Pire approach [23], the spin-averaged pp

scattering amplitude consists of the quark-counting (QC) and
the Landshoff (L) contribution:

(1)Mpp =Mpp

QC +Mpp
L .

The Mpp

QC term results in a differential cross section that scales

like dσpp/dt ∝ s−10 and the Landshoff term can be related to
it through

(2)Mpp
L = ρ1

2

√
s

1 GeV2
e±i(φ(s)+δ1)Mpp

QC.

Here, s and t are the Mandelstam variables. Further, ρ1 = 0.08,
φ(s) = π

0.06 ln{ln[ s

0.01 GeV2 ]}, and δ1 = −2.0. These values were
determined from a fit to the pp data at 90◦ [23]. The sole pa-
rameter which remains undetermined is the sign of the phase
difference φ(s)+ δ1 between the quark-counting and the Land-
shoff term. Therefore, both signs will be used in the calcula-
tions.
Incorporating the Ralston–Pire approach and the NF mech-
anism into the A(p,2p) formalism of Ref. [18], the ampli-
tude for the p(Ep1, �p1,ms1i ) + A(EA, �kA,0+) → p(Ek1, �k1,

ms1f ) + p(Ek2, �k2,ms2f ) + A − 1(EA−1, �kA−1, JRMR) reac-
tion becomes

M(p,2p)
f i =

∑
ms

(
Mpp

QC

)
ms1i ,ms ,ms1f ,ms2f

× ū( �pm,ms)φ
RMSGA+CT
α1

( �pm)

+
∑
ms

(
Mpp

L

)
ms1i ,ms ,ms1f ,ms2f

(3)× ū( �pm,ms)φ
RMSGA
α1

( �pm),

where �pm = �k1 + �k2 − �p1 is the missing momentum and α1
refers to the state wherein the struck proton resided. In this
expression, the effect of IFSI is accounted for through the
distorted momentum–space wave functions φRMSGA+CT

α1
( �pm)

and φRMSGA
α1

( �pm). Since the quark-counting term is associated
with PLCs, the corresponding momentum–space wave func-
tion φRMSGA+CT

α1
( �pm) includes the effect of CT. The Landshoff

term, on the other hand, corresponds with a hadron of nor-
mal size. Consequently, the IFSI can be computed in standard
Glauber theory. Using the spin-averaged pp matrix element of
Eq. (1), the squared A(p,2p) matrix element for knockout from
the α1 shell can be cast in the form

∑
if

∣∣M(p,2p)
f i

∣∣2

=
∑
m,ms

{∣∣Mpp

QC

∣∣2∣∣ū( �pm,ms)φ
RMSGA+CT
α1

( �pm)
∣∣2

+ 2 Re
[
Mpp

QC

(
Mpp

L

)∗
ū( �pm,ms)φ

RMSGA+CT
α1

( �pm)

× (
ū( �pm,ms)φ

RMSGA
α1

( �pm)
)∗]

(4)+ ∣∣Mpp
L

∣∣2∣∣ū( �pm,ms)φ
RMSGA
α1

( �pm)
∣∣2}

,

with m the struck nucleon’s generalized angular momentum
quantum number. The differential cross section is obtained as
an incoherent sum of the squared matrix elements over all pro-
ton levels α1, thereby factoring in the occupation number of
every level. The momentum–space wave function is defined
as [18]

(5)

φRMSGA(+CT)
α1

( �pm) =
∫

d�r e−i �pm·�rφα1(�r)ŜRMSGA(+CT)
IFSI (�r),

where the relativistic bound-state wave function φα1(�r) is com-
puted in the Hartree approximation to the σ −ω model [24], us-
ing the W1 parametrization for the different field strengths [25].
The ŜRMSGA(+CT)

IFSI (�r) operator accounts for the IFSI effects and
is the subject of the forthcoming discussion. Hereafter, results
obtained on the basis of Eq. (4) are dubbed RMSGA+CT+NF.

In the RMSGA framework, the IFSI operator takes on the
form [18]
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(6)

ŜRMSGA
IFSI (�r)

=
A∏

j=2

{∫
d�rj

∣∣φαj
(�rj )

∣∣2[1 − ΓpN(p1, �b − �bj )θ(z − zj )
]

× [
1 − ΓpN(k1, �b′ − �b′

j )θ(z′
j − z′)

]

× [
1 − ΓpN(k2, �b′′ − �b′′

j )θ(z′′
j − z′′)

]}
,

where �r denotes the point of collision between the struck and
incoming proton, and �rj (j = 2, . . . ,A) are the positions of the
frozen spectator nucleons. Further, the z axis lies along �p1, z′
along �k1, and z′′ along �k2. The �b, �b′, and �b′′ planes are per-
pendicular to these proton momenta. Reflecting the diffractive
nature of pN collisions at GeV energies, the profile function
for pN scattering is parametrized as

(7)ΓpN(k, �b) = σ tot
pN(k)(1 − iεpN(k))

4π(βpN(k))2
exp

(
− �b2

2(βpN(k))2

)
.

The total pN cross section σ tot
pN(k), the slope parameter

βpN(k), and the ratio of the real to the imaginary part of the
scattering amplitude εpN(k) depend on the proton momen-
tum k. In the numerical calculations, their values are obtained
through interpolation of the NN scattering database from the
Particle Data Group [26].

Eq. (6) is a genuine A-body operator and the integration over
the coordinates of the spectator nucleons makes its numerical
evaluation very challenging. The IFSI operator can be rewritten
in a numerically more convenient form by adopting the follow-
ing approximations. First, the squared wave functions of the
spectator protons (neutrons) are replaced by 1/(Z − 1) (1/N )
times the proton (neutron) density of the residual nucleus. Sec-
ond, one assumes that these densities are slowly varying func-
tions of �b, while ΓpN(k, �b) is sharply peaked at �b = �0. This
allows one to approximate the IFSI operator of Eq. (6) by the
one-body operator [27]:

ŜRMSGA′
IFSI (�r)
=

∏
N=p,n

e− 1
2 σ tot

pN (p1)(1−iεpN (p1))
∫ z
−∞ dzj ρN (�b,zj )

× e− 1
2 σ tot

pN (k1)(1−iεpN (k1))
∫ +∞
z′ dz′

j ρN (�b′,z′
j )

(8)× e− 1
2 σ tot

pN (k2)(1−iεpN (k2))
∫ +∞
z′′ dz′′

j ρN (�b′′,z′′
j )

.

Here, ρp and ρn are the proton and neutron density of the resid-
ual nucleus. They reflect the spatial distribution of the scattering
centers inside this nucleus. Henceforth, calculations based on
Eq. (8) are labeled as RMSGA′.

The essential assumption of CT is that the impinging proton
compresses to a PLC as it hits a target nucleon, after which the
outgoing protons expand from PLCs to normal-sized objects
as they move through the nucleus. To account for the reduced
interaction of a PLC with the nuclear medium, the total cross
sections σ tot

pN in Eqs. (7) and (8) are replaced by effective ones.
In the partonic model of Farrar et al. [21] (denoted by FLFS),
the interaction cross section is argued to be

(9)

σ FLFS
pN (p,Z) = σ tot

pN

{[
Z

lh
+ 〈n2k2

t 〉
|t |

(
1 − Z

lh

)]
θ(lh − Z)

+ θ(Z − lh)

}
.

Here, Z is the distance from the hard interaction point along
the trajectory of the particle, n = 3 is the number of con-
stituents in the proton, and 〈k2

t 〉1/2 = 0.35 GeV/c is the average
transverse momentum of a parton in a hadron. The quantity
lh � 2p/M2 is the hadronic expansion length, i.e., the prop-
agation distance at which an expanding hadron reaches its nor-
mal hadronic size, and depends on the hadron momentum p

and the squared mass difference M2 between the intermedi-
ate PLC and the normal-sized hadron. It is commonly assumed
that 0.7 � M2 � 1.1 (GeV/c2)2 are reasonable values.

Starting from a hadronic picture, Jennings and Miller [22]
suggested the following alternative expression for the effective
cross section

(10)σ JM
pN(p,Z) = σ tot

pN

(
1 − p

p∗ ei(p−p∗)Z
)

,

with p the proton momentum and p∗ the momentum of a
baryon resonance with a complex mass M∗ and the same en-
ergy as the nucleon, i.e., (p∗)2 = p2 + M2

p − (M∗)2. The ex-
pression for the effective cross section emanates from the in-
termediate PLC being a superposition of the nucleon ground
state and a nucleon resonance. The imaginary part of M∗ en-
sures the decay of the intermediate state to an asymptotically
free, normal-sized proton. Like the FLFS approach of Eq. (9),
Eq. (10) considers one excited state in the PLC. It is worth not-
ing that both the FLFS and JM model take into account the
suppression of interaction in the collision point and the time
evolution of the PLC to a normal-sized proton during its propa-
gation through the nucleus.

In our numerical calculations, we will also consider the stan-
dard RMSGA + CT picture. In this scenario, the entire wave
packet of the incoming and outgoing protons is assumed to be
in a PLC, which propagates through a passive nuclear medium.
This amounts to neglecting the Landshoff term in the ampli-
tudes Mpp and M(p,2p)

f i of Eqs. (1) and (3). Finally, in the
standard RMSGA calculations, both the Landshoff term and CT
effects are neglected.

For the free pp scattering cross section dσpp/dt , the para-
metrization as presented in Ref. [28] is used. This parametriza-
tion combines the θc.m. dependence suggested by [29] and the
Ralston–Pire separation of Eq. (2).

3. Nuclear transparency results

The nuclear transparency is computed as the ratio of the
cross sections including and excluding IFSI effects:

(11)T = σ (p,2p)

σ
(p,2p)

RPWIA

.

The relativistic plane wave approximation (RPWIA) limit is
reached by setting the IFSI operator ŜIFSI(�r) equal to one in
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Fig. 1. The nuclear transparency for the 12C(p,2p) reaction as a function
of the incoming lab momentum p1. The full RMSGA (solid lines) are com-
pared to the RMSGA′ (dashed lines) results. The different curves represent the
RMSGA, RMSGA + CT and RMSGA + CT + NF calculations. The CT ef-
fects are calculated in the FLFS model [21] with M2 = 0.7 (GeV/c2)2 and
the results including the mechanism of NF are obtained using the positive sign
of φ(s) + δ1. Data are from Refs. [4–6].

Eq. (5), and corresponds with a calculation which ignores IFSI.
The numerator and denominator of Eq. (11) are obtained by in-
tegrating the corresponding differential cross sections over the
phase space defined by the kinematic cuts. In our calculations,
we adopted identical cuts as in the experiments [4–6] and as-
sumed a flat experimental acceptance within the kinematical
ranges for each data point.

We consider the experimental nuclear transparency values as
presented in [30]. The incident lab momentum varies from 5.9
to 14.4 GeV/c and the scattering angle is near 90◦ in the pp

center of mass. The Mandelstam variable |t | � (s − 4M2
p)/2

extends from 4.7 to 12.7 (GeV/c)2. In Ref. [30], the originally
published values of Carroll et al. [4] were rescaled using the
improved nuclear momentum distributions of Ref. [31], thereby
making them consistent with the data of Refs. [5,6].

First, we address the energy dependence of the 12C(p,2p)

transparency and study the role of IFSI, CT and NF. Further, we
use the 12C(p,2p) calculations as a test case to determine the
accuracy of the IFSI operator of Eq. (8) relative to the expres-
sion of Eq. (6). Fig. 1 displays the 12C transparency as a func-
tion of the incoming proton momentum p1. The solid curves
represent the full RMSGA calculations, whereas the RMSGA′
results are shown as dashed curves. Three different scenarios
were considered. As expected, the standard RMSGA calcula-
tions lead to a nuclear transparency that is almost independent
of the beam momentum. The main effect of the IFSI is to re-
duce the nuclear transparency from the asymptotic value of 1
to ∼ 0.15. The inclusion of CT effects produces a transparency
linearly rising with energy. The increase relative to the RMSGA
result is highly dependent on the adopted model and corre-
sponding parameters for CT. The curves including CT shown
in Fig. 1 adopt the FLFS model with M2 = 0.7 (GeV/c2)2.
The increase of the transparency is consistent with the data in
Fig. 2. The 12C(p,2p) transparency versus the incoming lab momentum p1.
The upper (lower) panel depicts results using the FLFS (JM) model for CT.
Calculations including the effects of CT and NF with the positive (solid lines)
and negative (dashed lines) sign for φ(s) + δ1 are shown, along with the
RMSGA + CT predictions (dot-dashed lines). Data are from Refs. [4] (solid
triangles), [5] (solid squares), and [6] (solid circles).

the range 5–10 GeV/c, but the RMSGA + CT picture fails to
explain the drop in the transparency at higher momenta. Our
RMSGA and RMSGA + CT predictions confirm the results
of [32]. A better agreement with the data is obtained when
adding the mechanism of NF. Compared to the RMSGA + CT
results, the transparency is increased at intermediate momenta
(5–10 GeV/c) and decreased at higher momenta, two effects
which improve the description of the data. A similar result
was obtained in Ref. [33] where the JM model of CT was
used.

Concerning the comparison of the RMSGA and RMSGA′
results, it can be inferred from Fig. 1 that both approaches
yield nearly identical results which differ at the 2–3% level.
Consequently, the operator of Eq. (8) is considered sufficiently
accurate for the calculation of the nuclear transparency and will
be used in the remainder of this work. We wish to stress that the
computational cost of Eq. (8) is about a factor of 103 lower than
the full-blown RMSGA operator of Eq. (6).

Figs. 2 and 3 are devoted to a comparison of the different CT
models. Results of the FLFS quantum diffusion model are plot-
ted for M2 = 0.7 and 1.1 (GeV/c2)2. For the M∗ parameter
of the JM model we consider three different values, represent-
ing the , the Roper resonance, and the average of the lowest
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Fig. 3. As in Fig. 2, but for 27Al. Data are from Ref. [4].

P -wave N∗ resonances. For the imaginary part of M∗ a value of
150 MeV was taken. The lowest values of the parameters M2

and M∗ induce the strongest increase of the RMSGA + CT
transparency with the beam momentum p1 and also lead to
the largest deviations between the predictions including the NF
mechanism and the corresponding RMSGA + CT results.

Fig. 2 shows that after including NF and CT, the calcu-
lations correctly reproduce the maximum in the 12C(p,2p)

transparency at about 9.5 GeV/c, but badly fail to fall back
low enough to account for the 14.4 GeV/c data point. Ralston
and Pire [13], on the other hand, do succeed in reproducing the
maxima and minima in the nuclear transparency data. However,
they assume that the transparency of the quark-counting term is
beam-energy independent, a rather speculative assumption. The
CT-induced increase of the quark-counting transparency with
energy causes our RMSGA+CT+NF predictions to rise again
at a momentum p1 � 12 GeV/c.

In the FLFS as well as the JM approach, the RMSGA +
CT + NF predictions reproduce the general trend of the data,
but no variant achieves very good agreement. Furthermore, it
is not possible to unambiguously determine the value of the
parameters M2 and M∗, as the best choice for these pa-
rameters depends on the target nucleus under consideration.
Fig. 2 suggests that for the 12C(p,2p) reaction M∗ = (1440 +
150i) MeV leads to the best agreement, while for the M2

parameter no “best” choice can be put forward. Fig. 3, on the
other hand, shows that for the 27Al target nucleus the FLFS
results are systematically below the data in the region be-
low 10 GeV/c. Using M∗ = (1440 + 150i) MeV in the JM
model also does not increase the transparency high enough
so as to match the 6 and 10 GeV/c data points, only with
M∗ = (1232 + 150i) MeV is the CT-induced increase of the
transparency strong enough.

None of the results shown in this Letter include the color
screening effect (CSE) [34]. This QCD effect suggests the sup-
pression of the small-size configurations in bound nucleons.
We deem that the CT parameters are so badly constrained
that controlling additional mechanisms is out of reach for
the moment. In both the RMSGA + CT and the RMSGA +
CT + NF calculations, the inclusion of the CSE decreases the
transparency by 6–12%, with the largest effect occurring at
higher p1.

Another effect that can be studied in Figs. 2 and 3 is the in-
fluence of the sign of φ(s) + δ1 on the RMSGA + CT + NF
results. For the FLFS model of CT, the differences between cal-
culations using both signs of φ(s) + δ1 are minor. As already
observed by Jennings and Miller [33], the results using the JM
model of CT are rather sensitive to this sign. The discrepancy
between the FLFS- and JM-based calculations arises from the
different structure of the effective cross sections (9) and (10).
Indeed, these effective cross sections not only determine the at-
tenuation of the quark-counting term in the nuclear medium,
but also the phase difference between the quark-counting and
the Landshoff term. Whereas the real parts of both effective
cross sections are quite similar, the FLFS effective cross sec-
tion (9) is purely real, while its JM counterpart also has an
imaginary part. This imaginary part causes the enhanced sen-
sitivity of the JM results to the sign of φ(s) + δ1. As for which
sign causes the best agreement with the data, no firm conclu-
sions can be drawn. Indeed, the optimum choice for the sign
of φ(s) + δ1 depends on the used CT model (FLFS or JM),
the value of the parameter M2 or M∗, and the target nucleus.
For the 7Li(p,2p) reaction, the positive sign provides the best
agreement, while the 63Cu transparency data rather require a
negative sign.

The A dependence of the nuclear transparency at two values
of the incoming momentum p1 is studied in Fig. 4. The standard
RMSGA calculations fall considerably below the data. Further,
none of the RMSGA + CT + NF calculations succeed in simul-
taneously describing the data for all target nuclei. While the
FLFS approach agrees with the 7Li and 12C data points rather
well using M2 = 0.7 (GeV/c2)2, the FLFS results tend to
underestimate the 27Al and 63Cu data. With regard to the M∗
parameter of the JM model, for the 7Li and 12C nuclei a value
of M∗ = (1440 + 150i) MeV seems acceptable, whereas the
heavier 27Al and 63Cu nuclei need a smaller M∗ value. A gen-
eral feature of the RMSGA + CT + NF predictions is that their
A dependence is steeper than the data. Finally, the dot-dashed
and dotted curves indicate that the 6 GeV/c data are propor-
tional to A−2/3, while at 10 GeV/c the A dependence of the
data is more gradual (T ∝ A−1/3). This trend is not reproduced
by the standard RMSGA predictions, which are almost inde-
pendent of the incoming momentum. When CT and NF effects
are included, the softening of the A dependence with increas-
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Fig. 4. A dependence of the nuclear transparency at two values of the incom-
ing lab momentum p1. The standard RMSGA calculations are represented by
dashed curves, while the solid curves are RMSGA+CT+NF calculations with
the positive sign for φ(s) + δ1. The solid curves correspond with different de-
scriptions of the CT effects, as indicated by the legend. The dot-dashed (dotted)
curves display the A−1/3 (A−2/3) parametrization, normalized to the 7Li data
points. Data are from Ref. [4].

ing incoming momentum is also present in the calculations. For
example, the FLFS calculations with M2 = 0.7 (GeV/c2)2

correspond to T ∝ A−0.83 at 6 GeV/c incoming momentum
and T ∝ A−0.70 at 10 GeV/c.

4. Conclusions

In conclusion, we have developed a relativistic framework
to calculate the nuclear transparency for A(p,2p) processes.
A relativistic multiple-scattering Glauber model was used to
account for the IFSI. To reduce the computational cost of the
RMSGA calculations, some additional approximations were
made. The predictions with the full and the approximated
RMSGA approach agree at the few percent level. Thus, to de-
termine integrated quantities such as the nuclear transparency,
a valid alternative for the computationally intensive RMSGA
framework is available.

Using the concept of nuclear filtering, our calculations are
in qualitative agreement with the data, thereby confirming ear-
lier calculations [33,35,36]. Furthermore, our calculations seem
to indicate that CT is imperative to increase the calculations
to the level of the data. The same conclusion was reported in
Refs. [36,37]. The quantitative description of the data, however,
is far from perfect and it is not possible to constrain the magni-
tude of the parameters in the CT models.

The indications for CT in A(p,2p) reactions are not neces-
sarily in contradiction with the results from A(e, e′p) experi-
ments. Although the A(e, e′p) transparencies show no signif-
icant increase with the four-momentum transfer Q2 [38] and
can be reasonably reproduced in the RMSGA framework, the
existence of CT cannot be excluded since the predicted effect
is small [39]. This is caused by the small expansion times of
the PLC to normal size at the present A(e, e′p) kinematics. The
effect of CT is more pronounced in the A(p,2p) transparency
for different reasons. First, in the A(p,2p) reaction there are
three particles that can experience CT instead of only one in
A(e, e′p) reactions. Second, A(p,2p) data are available up to
Q2 = |t | values of 12.7 (GeV/c)2, while A(e, e′p) transparency
experiments are restricted to Q2 � 8 (GeV/c)2.

A number of uncertainties involving the A(p,2p) trans-
parency remain. One subject of discussion is the size of the
Landshoff term. According to Botts et al. [40], this term might
also be small-sized. This would make the survival probability
of the Landshoff and the quark-counting term rather similar and
would weaken the oscillations in the energy dependence of the
computed transparencies. Apart from the Ralston–Pire picture
discussed above, other explanations of the energy dependence
of the transparency have been suggested. For example, Brodsky
and de Teramond [14] interpreted the oscillatory behavior in
terms of two broad baryon resonances associated with strange
and charmed particle production thresholds, interfering with a
perturbative QCD background. An improved set of data, par-
ticularly at higher energies, is essential to clarify these issues.
The 50 GeV proton synchrotron that is under construction at
J-PARC [41] opens great opportunities for this research.
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